Advertisement

The European Physical Journal Special Topics

, Volume 228, Issue 11, pp 2351–2355 | Cite as

Diffusion dynamics and information spreading in multilayer networks: An overview

  • Matjaž PercEmail author
Editorial
  • 175 Downloads
Part of the following topical collections:
  1. Diffusion Dynamics and Information Spreading in Multilayer Networks

Abstract

Recent years have seen multilayer networks taking the helm at network science research. Diffusion dynamics and information spreading in multilayer networks are thereby two of the most explored topics, with numerous applications in social, technological, and biological systems. Almost a decade ago, groundbreaking research has shown that even small and seemingly unimportant changes in one network layer can have catastrophic consequences in many other network layers. Such failure cascades across different network layers can, for example, shut down power grids, arrest traffic, idle virality, or impair cooperation. Different spreading processes are often the common denominator of such phenomena, and in the light of their importance, we here present a brief overview of this subject.

References

  1. 1.
    A. Barrat, M. Barthélemy, A. Vespignani, Dynamical Processes on Complex Networks (Cambridge University Press, Cambridge, 2008).Google Scholar
  2. 2.
    M.E.J. Newman, Networks: An Introduction (Oxford University Press, Oxford, 2010).Google Scholar
  3. 3.
    E. Estrada, The Structure of Complex Networks: Theory and Applications (Oxford University Press, Oxford, 2012).Google Scholar
  4. 4.
    A.-L. Barabási, Network Science (Cambridge University Press, Cambridge, 2015).Google Scholar
  5. 5.
    D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998).ADSGoogle Scholar
  6. 6.
    A.-L. Barabási, R. Albert, Science 286, 509 (1999).ADSMathSciNetGoogle Scholar
  7. 7.
    M. Girvan, M.E. Newman, Proc. Natl. Acad. Sci. USA 99, 7821 (2002).ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002).ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    M.E.J. Newman, SIAM Rev. 45, 167 (2003).ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D. Hwang, Phys. Rep. 424, 175 (2006).ADSMathSciNetGoogle Scholar
  11. 11.
    S. Fortunato, Phys. Rep. 486, 75 (2010).ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    M. Barthelemy, Phys. Rep. 499, 1 (2011).ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    P. Holme, J. Saramäki, Phys. Rep. 519, 97 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    S. Boccaletti, G. Bianconi, R. Criado, C. del Genio, J. Gómez-Gardeñes, M. Romance, I. Sendiña-Nadal, Z. Wang, M. Zanin, Phys. Rep. 544, 1 (2014).ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    M. Kivelä, A. Arenas, M. Barthelemy, J.P. Gleeson, Y. Moreno, M.A. Porter, J. Complex Networks 2, 203 (2014).CrossRefGoogle Scholar
  16. 16.
    L. Lü, D. Chen, X.-L. Ren, Q.-M. Zhang, Y.-C. Zhang, T. Zhou, Phys. Rep. 650, 1 (2016).ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    T. Gross, B. Blasius, J.R. Soc, Interface 5, 259 (2008).Google Scholar
  18. 18.
    M. Perc, A. Szolnoki, BioSystems 99, 109 (2010).CrossRefGoogle Scholar
  19. 19.
    S.V. Buldyrev, R. Parshani, G. Paul, H.E. Stanley, S. Havlin, Nature 464, 1025 (2010).ADSCrossRefGoogle Scholar
  20. 20.
    R. Parshani, S.V. Buldyrev, S. Havlin, Phys. Rev. Lett. 105, 048701 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    P.J. Mucha, T. Richardson, K. Macon, M.A. Porter, J.-P. Onnela, Science 328, 876 (2010).ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    R. Parshani, S.V. Buldyrev, S. Havlin, Proc. Natl. Acad. Sci. USA 108, 1007 (2011).ADSCrossRefGoogle Scholar
  23. 23.
    J. Gao, S.V. Buldyrev, H.E. Stanley, S. Havlin, Nat. Phys. 8, 40 (2012).CrossRefGoogle Scholar
  24. 24.
    S. Havlin, D.Y. Kenett, E. Ben-Jacob, A. Bunde, H. Hermann, J. Kurths, S. Kirkpatrick, S. Solomon, J. Portugali, Eur. Phys. J. Special Topics 214, 273 (2012).ADSCrossRefGoogle Scholar
  25. 25.
    S. Gómez, A. Díaz-Guilera, J. Gómez-Gardeñes, C. Pérez-Vicente, Y. Moreno, A. Arenas, Phys. Rev. Lett. 110, 028701 (2013).ADSCrossRefGoogle Scholar
  26. 26.
    M. De Domenico, A. Solé-Ribalta, E. Cozzo, M. Kivelä, Y. Moreno, M.A. Porter, S. Gómez, A. Arenas, Phys. Rev. X 3, 041022 (2013).Google Scholar
  27. 27.
    Z. Wang, L. Wang, A. Szolnoki, M. Perc, Eur. Phys. J. B 88, 124 (2015).ADSCrossRefGoogle Scholar
  28. 28.
    D.Y. Kenett, M. Perc, S. Boccaletti, Chaos Soliton Fract. 80, 1 (2015).ADSCrossRefGoogle Scholar
  29. 29.
    Z. Wang, A. Szolnoki, M. Perc, EPL 97, 48001 (2012).ADSCrossRefGoogle Scholar
  30. 30.
    J. Gómez-Gardeñes, I. Reinares, A. Arenas, L.M. Flora, Sci. Rep. 2, 620 (2012).ADSCrossRefGoogle Scholar
  31. 31.
    J. Gómez-Gardeñes, C. Gracia-Lázaro, L.M. Flora, Y. Moreno, Phys. Rev. E 86, 056113 (2012).ADSCrossRefGoogle Scholar
  32. 32.
    B. Wang, X. Chen, L. Wang, J. Stat. Mech. 2012, P11017 (2012).CrossRefGoogle Scholar
  33. 33.
    Z. Wang, A. Szolnoki, M. Perc, Sci. Rep. 3, 1183 (2013).ADSCrossRefGoogle Scholar
  34. 34.
    Z. Wang, A. Szolnoki, M. Perc, Sci. Rep. 3, 2470 (2013).ADSCrossRefGoogle Scholar
  35. 35.
    L.-L. Jiang, M. Perc, Sci. Rep. 3, 2483 (2013).CrossRefGoogle Scholar
  36. 36.
    A. Szolnoki, M. Perc, New J. Phys. 15, 053010 (2013).ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Z. Wang, L. Wang, M. Perc, Phys. Rev. E 89, 052813 (2014).ADSCrossRefGoogle Scholar
  38. 38.
    F. Battiston, M. Perc, V. Latora, New J. Phys. 19, 073017 (2017).ADSCrossRefGoogle Scholar
  39. 39.
    C. Shen, C. Chu, L. Shi, M. Jusup, M. Perc, Z. Wang, EPL 124, 48003 (2018).CrossRefGoogle Scholar
  40. 40.
    C. Xia, X. Li, Z. Wang, M. Perc, New J. Phys. 20, 075005 (2018).ADSCrossRefGoogle Scholar
  41. 41.
    L. Shi, C. Shen, Y. Geng, C. Chu, H. Meng, M. Perc, S. Boccaletti, Z. Wang, Nonlinear Dyn. 96, 49 (2019).CrossRefGoogle Scholar
  42. 42.
    W. Li, A. Bashan, S.V. Buldyrev, Phys. Rev. Lett. 108, 228702 (2012).ADSCrossRefGoogle Scholar
  43. 43.
    C.D. Brummitt, R.M. D’Souza, E.A. Leicht, Proc. Natl. Acad. Sci. USA 109, E680 (2012).ADSCrossRefGoogle Scholar
  44. 44.
    J. Nagler, A. Levina, M. Timme, Nat. Phys. 7, 265 (2011).CrossRefGoogle Scholar
  45. 45.
    D. Cellai, E. López, J. Zhou, J.P. Gleeson, G. Bianconi, Phys. Rev. E 88, 052811 (2013).ADSCrossRefGoogle Scholar
  46. 46.
    R.G. Morris, M. Barthelemy, Phys. Rev. Lett. 109, 128703 (2012).ADSCrossRefGoogle Scholar
  47. 47.
    X. Sun, J. Lei, M. Perc, J. Kurths, G. Chen, Chaos 21, 016110 (2011).ADSCrossRefGoogle Scholar
  48. 48.
    C. Granell, S. Gómez, A. Arenas, Phys. Rev. Lett. 111, 128701 (2013).ADSCrossRefGoogle Scholar
  49. 49.
    X. Huang, J. Gao, S.V. Buldyrev, S. Havlin, H.E. Stanley, Phys. Rev. E 83, 065101(R) (2011).ADSCrossRefGoogle Scholar
  50. 50.
    D. Zhou, H.E. Stanley, G. D’Agostino, A. Scala, Phys. Rev. E 86, 066103 (2012).ADSCrossRefGoogle Scholar
  51. 51.
    E. Cozzo, A. Arenas, Y. Moreno, Phys. Rev. E 86, 036115 (2012).ADSCrossRefGoogle Scholar
  52. 52.
    V. Nicosia, G. Bianconi, V. Latora, M. Barthelemy, Phys. Rev. Lett. 111, 058701 (2013).ADSCrossRefGoogle Scholar
  53. 53.
    G. Bianconi, Phys. Rev. E 87, 062806 (2013).ADSCrossRefGoogle Scholar
  54. 54.
    F. Radicchi, A. Arenas, Nat. Phys. 9, 717 (2013).CrossRefGoogle Scholar
  55. 55.
    A. Arenas, A. Daz-Guilera, J. Kurths, Y. Moreno, C. Zhou, Phys. Rep. 469, 93 (2008).ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    J.A. Almendral, A. Daz-Guilera, New J. Phys. 9, 187 (2007).ADSCrossRefGoogle Scholar
  57. 57.
    M. Barahona, L.M. Pecora, Phys. Rev. Lett. 89, 054101 (2002).ADSCrossRefGoogle Scholar
  58. 58.
    S. Jalan, G. Zhu, B. Li, Phys. Rev. E 84, 046107 (2011).ADSCrossRefGoogle Scholar
  59. 59.
    E. Estrada, N. Hatano, M. Benzi, Phys. Rep. 514, 89 (2012).ADSMathSciNetCrossRefGoogle Scholar
  60. 60.
    P. Van Mieghem, Graph spectra for complex networks (Cambridge University Press, Cambridge, 2010).Google Scholar
  61. 61.
    F. Geier, W. Barfuss, M. Wiedermann, J. Kurths, J.F. Donges, Eur. Phys. J. Special Topics 228, 2357 (2019).Google Scholar
  62. 62.
    Y. Feng, A.J.M. Khalaf, F.E. Alsaadi, T. Hayat, V.-T. Pham, Eur. Phys. J. Special Topics 228, 2371 (2019).Google Scholar
  63. 63.
    N.S. Frolov, V.A. Maksimenko, M.V. Khramova, A.N. Pisarchik, A.E. Hramov, Eur. Phys. J. Special Topics 228, 2381 (2019).Google Scholar
  64. 64.
    Z. Wang, F.E. Alsaadi, V.-T. Pham, Eur. Phys. J. Special Topics 228, 2391 (2019).CrossRefGoogle Scholar
  65. 65.
    Y. Shaverdi, S. Panahi, T. Kapitaniak, S. Jafari, Eur. Phys. J. Special Topics 228, 2405 (2019).Google Scholar
  66. 66.
    X. Li, T. Xu, J. Li, Eur. Phys. J. Special Topics 228, 2419 (2019).Google Scholar
  67. 67.
    S. Kundu, S. Majhi, D. Ghosh, Eur. Phys. J. Special Topics 228, 2429 (2019).Google Scholar
  68. 68.
    B.K. Bera, S. Rakshit, D. Ghosh, Eur. Phys. J. Special Topics 228, 2441 (2019).Google Scholar
  69. 69.
    M. Ge, L. Lu, Y. Xu, X. Zhan, L. Yang, Y. Jia, Eur. Phys. J. Special Topics 228, 2455 (2019).Google Scholar
  70. 70.
    F. Parastesh, C.-Y. Chen, H. Azarnoush, S. Jafari, B. Hatef, Eur. Phys. J. Special Topics 228, 2465 (2019).Google Scholar
  71. 71.
    F. An, X. Gao, J. Guan, M. Jiang, Q. Liu, Eur. Phys. J. Special Topics 228, 2475 (2019).Google Scholar
  72. 72.
    M. Pósfai, N. Braun, B.A. Beisner, B. McCowan, R.M. D’Souza, New J. Phys. 21, 055001 (2019).ADSCrossRefGoogle Scholar
  73. 73.
    B. Min, M. San Miguel, New J. Phys. 21, 035004 (2019).ADSCrossRefGoogle Scholar
  74. 74.
    J. Choi, K.-I. Goh, New J. Phys. 21, 035005 (2019).ADSCrossRefGoogle Scholar
  75. 75.
    J. Van Lidth, T. de Jeude, G.Caldarelli Aste, New J. Phys. 21, 025002 (2019).ADSCrossRefGoogle Scholar
  76. 76.
    J.D. O’Brien, I.K. Dassios, J.P. Gleeson, New J. Phys. 21, 025001 (2019).ADSCrossRefGoogle Scholar
  77. 77.
    R.-R. Liu, C.-X. Jia, Y.-C. Lai, New J. Phys. 21, 045002 (2019).ADSCrossRefGoogle Scholar
  78. 78.
    G. Cencetti, F. Battiston, New J. Phys. 21, 035006 (2019).ADSCrossRefGoogle Scholar
  79. 79.
    H. Wang, C. Qu, C. Jiao, W. Rusze, New J. Phys. 21, 035001 (2019).ADSCrossRefGoogle Scholar
  80. 80.
    Y. Zhou, J. Zhou, G. Chen, H.E. Stanley, New J. Phys. 21, 035002 (2019).ADSCrossRefGoogle Scholar
  81. 81.
    A. Solé-Ribalta, A. Arenas, S. Gómez, New J. Phys. 21, 035003 (2019).ADSCrossRefGoogle Scholar
  82. 82.
    J. Liu, Y. Fan, J. Zhang, Z. Di, New J. Phys. 21, 015007 (2019).ADSCrossRefGoogle Scholar
  83. 83.
    A.D. Kachhvah, S. Jalan, New J. Phys. 21, 015006 (2019).CrossRefGoogle Scholar
  84. 84.
    H.-J. Li, L. Wang, New J. Phys. 21, 015005 (2019).ADSCrossRefGoogle Scholar
  85. 85.
    E. Estrada, New J. Phys. 21, 015004 (2019).ADSCrossRefGoogle Scholar
  86. 86.
    D. Han, X. Li, New J. Phys. 21, 015002 (2019).ADSCrossRefGoogle Scholar
  87. 87.
    N. An, H. Chen, C. Ma, H. Zhang, New J. Phys. 20, 125006 (2018).CrossRefGoogle Scholar
  88. 88.
    W. Dang, Z. Gao, D. Lv, M. Liu, Q. Cai, X. Hong, New J. Phys. 20, 125005 (2018).CrossRefGoogle Scholar
  89. 89.
    L. Valdez, H.A. Rêgo, H. Stanley, S. Havlin, L. Braunstein, New J. Phys. 20, 125003 (2018).CrossRefGoogle Scholar
  90. 90.
    X. Zhu, H. Tian, X. Chen, W. Wang, S. Cai, New J. Phys. 20, 125002 (2018).ADSCrossRefGoogle Scholar
  91. 91.
    G.F. de Arruda, E. Cozzo, F.A. Rodrigues, Y. Moreno, New J. Phys. 20, 095004 (2018).CrossRefGoogle Scholar
  92. 92.
    H.-C.H. Chang, F. Fu, New J. Phys. 20, 095001 (2018).ADSCrossRefGoogle Scholar
  93. 93.
    E. Pitsik, V. Makarov, D. Kirsanov, N. Frolov, M. Goremyko, X. Li, Z. Wang, A. Hramov, S. Boccaletti, New J. Phys. 20, 075004 (2018).ADSCrossRefGoogle Scholar
  94. 94.
    C. Xia, X. Li, Z. Wang, M. Perc, New J. Phys. 20, 075005 (2018).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Natural Sciences and Mathematics, University of MariborMariborSlovenia
  2. 2.Center for Applied Mathematics and Theoretical Physics, University of MariborMariborSlovenia
  3. 3.Complexity Science Hub ViennaViennaAustria

Personalised recommendations