Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Stability of vacancy-free crystalline phases of titanium monoxide at high pressure and temperature

  • 5 Accesses

  • 1 Citations

Abstract

There has existed for a long time a paradigm that TiO phases at ambient conditions are stable only if structural vacancies are available. Using an evolutionary algorithm, we perform an ab initio search of possible zero-temperature polymorphs of TiO in wide pressure interval. We obtain the Gibbs energy of the competing phases taking into account entropy via quasiharmonic approximation and build the pressure–temperature diagram of the system. We reveal that two vacancy-free hexagonal phases are the most stable at relatively low temperatures in a wide range of pressures. The transition between these phases takes place at 28 GPa. Only above 1290 K at ambient pressure the phases with vacancies (B1-derived) become stable. In particular, the high-pressure hexagonal phase is shown to have unusual electronic properties, with a pronounced pseudo-gap in the electronic spectrum. The comparison of DFT–GGA and GW calculations demonstrates that the account for many-body corrections significantly changes the electronic spectrum near the Fermi energy.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    S. Yamaoka, K. Kobayashi, K. Sueoka, J. Vanhellemont, J. Cryst. Growth 474, 104 (2017)

  2. 2.

    R.P. de Carvalho, C.R. Miranda, A.F. da Silva, J. Cryst. Growth 499, 13 (2018)

  3. 3.

    E. Sedaghati, H.M.J. Boffin, R.J. MacDonald, S. Gandhi, N. Madhusudhan, N.P. Gibson, M. Oshagh, A. Claret, H. Rauer, Nature 549, 238 (2017)

  4. 4.

    X. Jijian, W. Dong, Y. Heliang, B. Kejun, P. Jie, H. Jianqiao, X. Fangfang, H. Zhanglian, C. Xiaobo, H. Fuqiang, Adv. Mater. 30, 1706240 (2018)

  5. 5.

    N. Dwivedi, R.J. Yeo, H.R. Tan, R. Stangl, A.G. Aberle, C.S. Bhatia, A. Danner, B. Liao, Adv. Funct. Mater. 28, 1707018 (2018)

  6. 6.

    W.C. Peng, Y.C. Chen, J.L. He, S.L. Ou, R.H. Horng, D.S. Wuu, Sci. Rep. 8, 9255 (2018)

  7. 7.

    C. Ou, J. Hou, T.R. Wei, B. Jiang, S. Jiao, J.F. Li, H. Zhu, NPG Asia Mater. 7, e182 (2015)

  8. 8.

    M. Ramasamy, J. Lee, BioMed Res. Int. 2016, 1851242 (2016)

  9. 9.

    N.K. Rajendran, S.S.D. Kumar, N.N. Houreld, H. Abrahamse, J. Drug Delivery Sci. Technol. 44, 421 (2018)

  10. 10.

    I.S. Popov, A.N. Enyashin, A.A. Rempel, Superlattices Microstruct. 113, 459 (2018)

  11. 11.

    S. Bartkowski, M. Neumann, E.Z. Kurmaev, V.V. Fedorenko, S.N. Shamin, V.M. Cherkashenko, S.N. Nemnonov, A. Winiarski, D.C. Rubie, Phys. Rev. B 56, 10656 (1997)

  12. 12.

    A. Taylor, N.J. Doyle, High Temp. High Press. 1, 679 (1969)

  13. 13.

    M.G. Kostenko, A.A. Valeeva, A.A. Rempel, JETP Lett. 106, 354 (2017)

  14. 14.

    N.M. Chtchelkatchev, R.E. Ryltsev, M.G. Kostenko, A.A. Rempel, JETP Lett. 108, 476 (2018)

  15. 15.

    A.I. Gusev, A.A. Rempel, A.J. Magerl, Disorder and order in strongly nonstoichiometric compounds. Transition metal carbides, nitrides and oxides (Springer, Berlin, 2001)

  16. 16.

    J.L. Murray, H.A. Wriedt, Bull. Alloy Phase Diagrams 8, 148 (1987)

  17. 17.

    D. Watanabe, J.R. Castles, A. Jostsons, A.S. Marlin, Nature 210, 934 (1966)

  18. 18.

    A.I. Gusev, J. Sol. State Chem. 199 (2013) 934.

  19. 19.

    S. Amano, D. Bogdanovski, H. Yamane, M. Terauchi, R. Dronskowski, Angew. Chem. Int. Ed. 55, 1652 (2016)

  20. 20.

    S. Möhr, Hk. Müller-Buschbaum, Z. Anorg. Allg. Chem. 620, 1175 (1994)

  21. 21.

    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys.: Condens. Matter 21, 395502 (2009)

  22. 22.

    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

  23. 23.

    F. Aryasetiawan, O. Gunnarsson, Rep. Prog. Phys. 61, 237 (1998)

  24. 24.

    A.R. Oganov, C.W. Glass, J. Chem. Phys. 124, 244704 (2006)

  25. 25.

    A.O. Lyakhov, A.R. Oganov, H.T. Stokes, Q. Zhu, Comput. Phys. Commun. 184, 1172 (2013)

  26. 26.

    A.R. Oganov, A.O. Lyakhov, M. Valle, Acc. Chem. Res. 44, 227 (2011)

  27. 27.

    A. Togo, I. Tanaka, Scr. Mater. 108, 1 (2015)

  28. 28.

    A. Togo, L. Chaput, I. Tanaka, G. Hug, Phys. Rev. B 81, 174301 (2010)

  29. 29.

    J. Graciani, A. Marquez, J.F. Sanz, Phys. Rev. B 72, 054117 (2005)

  30. 30.

    D.A. Andersson, P.A. Korzhavyi, B. Johansson, Phys. Rev. B 71, 144101 (2005)

Download references

Author information

Correspondence to N. M. Chtchelkatchev.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chtchelkatchev, N.M., Ryltsev, R.E., Magnitskaya, M.V. et al. Stability of vacancy-free crystalline phases of titanium monoxide at high pressure and temperature. Eur. Phys. J. Spec. Top. 229, 179–185 (2020). https://doi.org/10.1140/epjst/e2019-900113-5

Download citation