Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Unified scaling law for rate factor of crystallization kinetics

  • 8 Accesses

Abstract

Features of the crystallization kinetics define directly the rate characteristics: the crystal nucleation rate, the crystal growth rate and the so-called kinetic rate factor known also as the attachment rate (of particles to the surface of a crystalline nucleus). We show that the kinetic rate factor as function of the reduced temperature follows a unified scaling power law. This scenario is confirmed by our simulation results for model atomistic systems (crystallizing volumetric liquids and liquid thin film) and by available experimental data for crystallizing polymers. We find that the exponent of this unified scaling law is associated with a measure of the glass-forming ability of a system. The results of the present study extend the idea of a unified description of the rate characteristics of the crystal nucleation and growth kinetics by means of the scaling relations.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    D. Kashchiev, Nucleation: Basic Theory with Applications (Butterworth-Heinemann, Oxford, 2000)

  2. 2.

    J.W.P. Schmelzer, A.S. Abyzov, V.M. Fokin, C. Schick, E.D. Zanotto, J. Non-Cryst, Solids 429, 24 (2015)

  3. 3.

    K.F. Kelton, A.L. Greer, Nucleation in Condensed Matter (Elsevier, Amsterdam, 2010)

  4. 4.

    V.I. Kalikmanov, Nucleation Theory, Lecture Notes in Physics (Springer, New-York, 2012)

  5. 5.

    F. Turci, T. Schilling, M.H. Yamani, M. Oettel, Eur. Phys. J. Special Topics 223, 421 (2014)

  6. 6.

    H. Song, Y. Sun, F. Zhang, C.Z. Wang, K.M. Ho, M.I. Mendelev, Phys. Rev. Mater. 2, 023401 (2018)

  7. 7.

    M.C. Weinberg, W.H. Poisl, L. Granasy, C.R. Chim. 5, 765 (2002)

  8. 8.

    A.V. Mokshin, B.N. Galimzyanov, Phys. Chem. Chem. Phys. 19, 11340 (2017)

  9. 9.

    D. Turnbull, J.C. Fisher, J. Chem. Phys. 17, 71 (1949)

  10. 10.

    K.F. Kelton, A.L. Greer, J. Non-Cryst, Solids 79, 295 (1986)

  11. 11.

    P.K. Galenko, V. Ankudinov, K. Reuther, M. Rettenmayr, A. Salhoumi, E.V. Kharanzhevskiy, Philos. Trans. R. Soc. A 377, 20180205 (2019)

  12. 12.

    G. Demange, H. Zapolsky, R. Patte, M. Brunel, Phys. Rev. E 96, 022803 (2017)

  13. 13.

    G. Demange, H. Zapolsky, R. Patte, M. Brunel, N.P.J. Comput Mater. 3, 15 (2017)

  14. 14.

    J.W. Barrett, H. Garcke, R. Nürnberg, Phys. Rev. E 86, 011604 (2012)

  15. 15.

    S. Auer, D. Frenkel, J. Chem. Phys. 120, 3015 (2004)

  16. 16.

    J.W.P. Schmelzer, Mater. Phys. Mech. 6, 21 (2003)

  17. 17.

    C. Huang, S. Ruan, T. Cai, L. Yu, J. Phys. Chem. B 121, 9463 (2017)

  18. 18.

    B.N. Galimzyanov, D.T. Yarullin, A.V. Mokshin, Acta Mater. 169, 184 (2019)

  19. 19.

    A.V. Mokshin, B.N. Galimzyanov, J. Chem. Phys. 142, 104502 (2015)

  20. 20.

    I. Avramov, E.D. Zanotto, M.O. Prado, J. Non-Cryst Solids 320, 9 (2003)

  21. 21.

    M.L.F. Nascimento, C. Aparicio, Physica B 398, 71 (2007)

  22. 22.

    Q. Shi, C. Zhang, Y. Su, J. Zhang, D. Zhou, T. Cai, Mol. Pharmaceutics 14, 2262 (2017)

  23. 23.

    C.A. Angell, K.L. Ngai, G.B. McKenna, P.F. McMillan, S.W. Martin, J. Appl. Phys. 88, 3113 (2000)

  24. 24.

    S. Miriglan, K.S. Schweizer, J. Chem. Phys. 140, 194507 (2014)

  25. 25.

    P.G. Santangelo, C.M. Roland, Macromolecules 31, 4581 (1988)

Download references

Author information

Correspondence to Anatolii V. Mokshin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mokshin, A.V., Galimzyanov, B.N. & Yarullin, D.T. Unified scaling law for rate factor of crystallization kinetics. Eur. Phys. J. Spec. Top. 229, 427–432 (2020). https://doi.org/10.1140/epjst/e2019-900092-y

Download citation