Advertisement

The European Physical Journal Special Topics

, Volume 228, Issue 4, pp 755–1107 | Cite as

FCC-hh: The Hadron Collider

Future Circular Collider Conceptual Design Report Volume 3
  • A. Abada
  • M. Abbrescia
  • S. S. AbdusSalam
  • I. Abdyukhanov
  • J. Abelleira Fernandez
  • A. Abramov
  • M. Aburaia
  • A. O. Acar
  • P. R. Adzic
  • P. Agrawal
  • J. A. Aguilar-Saavedra
  • J. J. Aguilera-Verdugo
  • M. Aiba
  • I. Aichinger
  • G. Aielli
  • A. Akay
  • A. Akhundov
  • H. Aksakal
  • J. L. Albacete
  • S. Albergo
  • A. Alekou
  • M. Aleksa
  • R. Aleksan
  • R. M. Alemany Fernandez
  • Y. Alexahin
  • R. G. Alía
  • S. Alioli
  • N. Alipour Tehrani
  • B. C. Allanach
  • P. P. Allport
  • M. Altınlı
  • W. Altmannshofer
  • G. Ambrosio
  • D. Amorim
  • O. Amstutz
  • L. Anderlini
  • A. Andreazza
  • M. Andreini
  • A. Andriatis
  • C. Andris
  • A. Andronic
  • M. Angelucci
  • F. Antinori
  • S. A. Antipov
  • M. Antonelli
  • M. Antonello
  • P. Antonioli
  • S. Antusch
  • F. Anulli
  • L. Apolinário
  • G. Apollinari
  • A. Apollonio
  • D. Appelö
  • R. B. Appleby
  • A. Apyan
  • A. Apyan
  • A. Arbey
  • A. Arbuzov
  • G. Arduini
  • V. Arı
  • S. Arias
  • N. Armesto
  • R. Arnaldi
  • S. A. Arsenyev
  • M. Arzeo
  • S. Asai
  • E. Aslanides
  • R. W. Aßmann
  • D. Astapovych
  • M. Atanasov
  • S. Atieh
  • D. Attié
  • B. Auchmann
  • A. Audurier
  • S. Aull
  • S. Aumon
  • S. Aune
  • F. Avino
  • G. Avrillaud
  • G. Aydın
  • A. Azatov
  • G. Azuelos
  • P. Azzi
  • O. Azzolini
  • P. Azzurri
  • N. Bacchetta
  • E. Bacchiocchi
  • H. Bachacou
  • Y. W. Baek
  • V. Baglin
  • Y. Bai
  • S. Baird
  • M. J. Baker
  • M. J. Baldwin
  • A. H. Ball
  • A. Ballarino
  • S. Banerjee
  • D. P. Barber
  • D. Barducci
  • P. Barjhoux
  • D. Barna
  • G. G. Barnaföldi
  • M. J. Barnes
  • A. Barr
  • J. Barranco García
  • J. Barreiro Guimarães da Costa
  • W. Bartmann
  • V. Baryshevsky
  • E. Barzi
  • S. A. Bass
  • A. Bastianin
  • B. Baudouy
  • F. Bauer
  • M. Bauer
  • T. Baumgartner
  • I. Bautista-Guzmán
  • C. Bayındır
  • F. Beaudette
  • F. Bedeschi
  • M. Béguin
  • I. Bellafont
  • L. Bellagamba
  • N. Bellegarde
  • E. Belli
  • E. Bellingeri
  • F. Bellini
  • G. Bellomo
  • S. Belomestnykh
  • G. Bencivenni
  • M. BenediktEmail author
  • G. Bernardi
  • J. Bernardi
  • C. Bernet
  • J. M. Bernhardt
  • C. Bernini
  • C. Berriaud
  • A. Bertarelli
  • S. Bertolucci
  • M. I. Besana
  • M. Besançon
  • O. Beznosov
  • P. Bhat
  • C. Bhat
  • M. E. Biagini
  • J. -L. Biarrotte
  • A. Bibet Chevalier
  • E. R. Bielert
  • M. Biglietti
  • G. M. Bilei
  • B. Bilki
  • C. Biscari
  • F. Bishara
  • O. R. Blanco-García
  • F. R. Blánquez
  • F. Blekman
  • A. Blondel
  • J. Blümlein
  • T. Boccali
  • R. Boels
  • S. A. Bogacz
  • A. Bogomyagkov
  • O. Boine-Frankenheim
  • M. J. Boland
  • S. Bologna
  • O. Bolukbasi
  • M. Bomben
  • S. Bondarenko
  • M. Bonvini
  • E. Boos
  • B. Bordini
  • F. Bordry
  • G. Borghello
  • L. Borgonovi
  • S. Borowka
  • D. Bortoletto
  • D. Boscherini
  • M. Boscolo
  • S. Boselli
  • R. R. Bosley
  • F. Bossu
  • C. Botta
  • L. Bottura
  • R. Boughezal
  • D. Boutin
  • G. Bovone
  • I. Božović Jelisavić
  • A. Bozbey
  • C. Bozzi
  • D. Bozzini
  • V. Braccini
  • S. Braibant-Giacomelli
  • J. Bramante
  • P. Braun-Munzinger
  • J. A. Briffa
  • D. Britzger
  • S. J. Brodsky
  • J. J. Brooke
  • R. Bruce
  • P. Brückman De Renstrom
  • E. Bruna
  • O. Brüning
  • O. Brunner
  • K. Brunner
  • P. Bruzzone
  • X. Buffat
  • E. Bulyak
  • F. Burkart
  • H. Burkhardt
  • J. -P. Burnet
  • F. Butin
  • D. Buttazzo
  • A. Butterworth
  • M. Caccia
  • Y. Cai
  • B. Caiffi
  • V. Cairo
  • O. Cakir
  • R. Calaga
  • S. Calatroni
  • G. Calderini
  • G. Calderola
  • A. Caliskan
  • D. Calvet
  • M. Calviani
  • J. M. Camalich
  • P. Camarri
  • M. Campanelli
  • T. Camporesi
  • A. C. Canbay
  • A. Canepa
  • E. Cantergiani
  • D. Cantore-Cavalli
  • M. Capeans
  • R. Cardarelli
  • U. Cardella
  • A. Cardini
  • C. M. Carloni Calame
  • F. Carra
  • S. Carra
  • A. Carvalho
  • S. Casalbuoni
  • J. Casas
  • M. Cascella
  • P. Castelnovo
  • G. Castorina
  • G. Catalano
  • V. Cavasinni
  • E. Cazzato
  • E. Cennini
  • A. Cerri
  • F. Cerutti
  • J. Cervantes
  • I. Chaikovska
  • J. Chakrabortty
  • M. Chala
  • M. Chamizo-Llatas
  • H. Chanal
  • D. Chanal
  • S. Chance
  • A. Chancé
  • P. Charitos
  • J. Charles
  • T. K. Charles
  • S. Chattopadhyay
  • R. Chehab
  • S. V. Chekanov
  • N. Chen
  • A. Chernoded
  • V. Chetvertkova
  • L. Chevalier
  • G. Chiarelli
  • G. Chiarello
  • M. Chiesa
  • P. Chiggiato
  • J. T. Childers
  • A. Chmielińska
  • A. Cholakian
  • P. Chomaz
  • M. Chorowski
  • W. Chou
  • M. Chrzaszcz
  • E. Chyhyrynets
  • G. Cibinetto
  • A. K. Ciftci
  • R. Ciftci
  • R. Cimino
  • M. Ciuchini
  • P. J. Clark
  • Y. Coadou
  • M. Cobal
  • A. Coccaro
  • J. Cogan
  • E. Cogneras
  • F. Collamati
  • C. Colldelram
  • P. Collier
  • J. Collot
  • R. Contino
  • F. Conventi
  • C. T. A. Cook
  • L. Cooley
  • G. Corcella
  • A. S. Cornell
  • G. H. Corral
  • H. Correia-Rodrigues
  • F. Costanza
  • P. Costa Pinto
  • F. Couderc
  • J. Coupard
  • N. Craig
  • I. Crespo Garrido
  • A. Crivellin
  • J. F. Croteau
  • M. Crouch
  • E. Cruz Alaniz
  • B. Curé
  • J. Curti
  • D. Curtin
  • M. Czech
  • C. Dachauer
  • R. T. D’Agnolo
  • M. Daibo
  • A. Dainese
  • B. Dalena
  • A. Daljevec
  • W. Dallapiazza
  • L. D’Aloia Schwartzentruber
  • M. Dam
  • G. D’Ambrosio
  • S. P. Das
  • S. DasBakshi
  • W. da Silva
  • G. G. da Silveira
  • V. D’Auria
  • S. D’Auria
  • A. David
  • T. Davidek
  • A. Deandrea
  • J. de Blas
  • C. J. Debono
  • S. De Curtis
  • N. De Filippis
  • D. de Florian
  • S. Deghaye
  • S. J. de Jong
  • C. Del Bo
  • V. Del Duca
  • D. Delikaris
  • F. Deliot
  • A. Dell’Acqua
  • L. Delle Rose
  • M. Delmastro
  • E. De Lucia
  • M. Demarteau
  • D. Denegri
  • L. Deniau
  • D. Denisov
  • H. Denizli
  • A. Denner
  • D. d’Enterria
  • G. de Rijk
  • A. De Roeck
  • F. Derue
  • O. Deschamps
  • S. Descotes-Genon
  • P. S. B. Dev
  • J. B. de Vivie de Régie
  • R. K. Dewanjee
  • A. Di Ciaccio
  • A. Di Cicco
  • B. M. Dillon
  • B. Di Micco
  • P. Di Nezza
  • S. Di Vita
  • A. Doblhammer
  • A. Dominjon
  • M. D’Onofrio
  • F. Dordei
  • A. Drago
  • P. Draper
  • Z. Drasal
  • M. Drewes
  • L. Duarte
  • I. Dubovyk
  • P. Duda
  • A. Dudarev
  • L. Dudko
  • D. Duellmann
  • M. Dünser
  • T. du Pree
  • M. Durante
  • H. Duran Yildiz
  • S. Dutta
  • F. Duval
  • J. M. Duval
  • Y. Dydyshka
  • B. Dziewit
  • S. Eisenhardt
  • M. Eisterer
  • T. Ekelof
  • D. El Khechen
  • S. A. Ellis
  • J. Ellis
  • J. A. Ellison
  • K. Elsener
  • M. Elsing
  • Y. Enari
  • C. Englert
  • H. Eriksson
  • K. J. Eskola
  • L. S. Esposito
  • O. Etisken
  • E. Etzion
  • P. Fabbricatore
  • A. Falkowski
  • A. Falou
  • J. Faltova
  • J. Fan
  • L. Fanò
  • A. Farilla
  • R. Farinelli
  • S. Farinon
  • D. A. Faroughy
  • S. D. Fartoukh
  • A. Faus-Golfe
  • W. J. Fawcett
  • G. Felici
  • L. Felsberger
  • C. Ferdeghini
  • A. M. Fernandez Navarro
  • A. Fernández-Téllez
  • J. Ferradas Troitino
  • G. Ferrara
  • R. Ferrari
  • L. Ferreira
  • P. Ferreira da Silva
  • G. Ferrera
  • F. Ferro
  • M. Fiascaris
  • S. Fiorendi
  • C. Fiorio
  • O. Fischer
  • E. Fischer
  • W. Flieger
  • M. Florio
  • D. Fonnesu
  • E. Fontanesi
  • N. Foppiani
  • K. Foraz
  • D. Forkel-Wirth
  • S. Forte
  • M. Fouaidy
  • D. Fournier
  • T. Fowler
  • J. Fox
  • P. Francavilla
  • R. Franceschini
  • S. Franchino
  • E. Franco
  • A. Freitas
  • B. Fuks
  • K. Furukawa
  • S. V. Furuseth
  • E. Gabrielli
  • A. Gaddi
  • M. Galanti
  • E. Gallo
  • S. Ganjour
  • J. Gao
  • J. Gao
  • V. Garcia Diaz
  • M. García Pérez
  • L. García Tabarés
  • C. Garion
  • M. V. Garzelli
  • I. Garzia
  • S. M. Gascon-Shotkin
  • G. Gaudio
  • P. Gay
  • S. -F. Ge
  • T. Gehrmann
  • M. H. Genest
  • R. Gerard
  • F. Gerigk
  • H. Gerwig
  • P. Giacomelli
  • S. Giagu
  • E. Gianfelice-Wendt
  • F. Gianotti
  • F. Giffoni
  • S. S. Gilardoni
  • M. Gil Costa
  • M. Giovannetti
  • M. Giovannozzi
  • P. Giubellino
  • G. F. Giudice
  • A. Giunta
  • L. K. Gladilin
  • S. Glukhov
  • J. Gluza
  • G. Gobbi
  • B. Goddard
  • F. Goertz
  • T. Golling
  • V. P. Goncalves
  • R. Gonçalo
  • L. A. Gonzalez Gomez
  • S. Gorgi Zadeh
  • G. Gorine
  • E. Gorini
  • S. A. Gourlay
  • L. Gouskos
  • F. Grancagnolo
  • A. Grassellino
  • A. Grau
  • E. Graverini
  • H. M. Gray
  • Ma. Greco
  • Mi. Greco
  • J. -L. Grenard
  • O. Grimm
  • C. Grojean
  • V. A. Gromov
  • J. F. Grosse-Oetringhaus
  • A. Grudiev
  • K. Grzanka
  • J. Gu
  • D. Guadagnoli
  • V. Guidi
  • S. Guiducci
  • G. Guillermo Canton
  • Y. O. Günaydin
  • R. Gupta
  • R. S. Gupta
  • J. Gutierrez
  • J. Gutleber
  • C. Guyot
  • V. Guzey
  • C. Gwenlan
  • C. Haberstroh
  • B. Hacışahinoğlu
  • B. Haerer
  • K. Hahn
  • T. Hahn
  • A. Hammad
  • C. Han
  • M. Hance
  • A. Hannah
  • P. C. Harris
  • C. Hati
  • S. Haug
  • J. Hauptman
  • V. Haurylavets
  • H. -J. He
  • A. Hegglin
  • B. Hegner
  • K. Heinemann
  • S. Heinemeyer
  • C. Helsens
  • A. Henriques
  • A. Henriques
  • P. Hernandez
  • R. J. Hernández-Pinto
  • J. Hernandez-Sanchez
  • T. Herzig
  • I. Hiekkanen
  • W. Hillert
  • T. Hoehn
  • M. Hofer
  • W. Höfle
  • F. Holdener
  • S. Holleis
  • B. Holzer
  • D. K. Hong
  • C. G. Honorato
  • S. C. Hopkins
  • J. Hrdinka
  • F. Hug
  • B. Humann
  • H. Humer
  • T. Hurth
  • A. Hutton
  • G. Iacobucci
  • N. Ibarrola
  • L. Iconomidou-Fayard
  • K. Ilyina-Brunner
  • J. Incandela
  • A. Infantino
  • V. Ippolito
  • M. Ishino
  • R. Islam
  • H. Ita
  • A. Ivanovs
  • S. Iwamoto
  • A. Iyer
  • S. Izquierdo Bermudez
  • S. Jadach
  • D. O. Jamin
  • P. Janot
  • P. Jarry
  • A. Jeff
  • P. Jenny
  • E. Jensen
  • M. Jensen
  • X. Jiang
  • J. M. Jiménez
  • M. A. Jones
  • O. R. Jones
  • J. M. Jowett
  • S. Jung
  • W. Kaabi
  • M. Kado
  • K. Kahle
  • L. Kalinovskaya
  • J. Kalinowski
  • J. F. Kamenik
  • K. Kannike
  • S. O. Kara
  • H. Karadeniz
  • V. Karaventzas
  • I. Karpov
  • S. Kartal
  • A. Karyukhin
  • V. Kashikhin
  • J. Katharina Behr
  • U. Kaya
  • J. Keintzel
  • P. A. Keinz
  • K. Keppel
  • R. Kersevan
  • K. Kershaw
  • H. Khanpour
  • S. Khatibi
  • M. Khatiri Yanehsari
  • V. V. Khoze
  • J. Kieseler
  • A. Kilic
  • A. Kilpinen
  • Y. -K. Kim
  • D. W. Kim
  • U. Klein
  • M. Klein
  • F. Kling
  • N. Klinkenberg
  • S. Klöppel
  • M. Klute
  • V. I. Klyukhin
  • M. Knecht
  • B. Kniehl
  • F. Kocak
  • C. Koeberl
  • A. M. Kolano
  • A. Kollegger
  • K. Kołodziej
  • A. A. Kolomiets
  • J. Komppula
  • I. Koop
  • P. Koppenburg
  • M. Koratzinos
  • M. Kordiaczyńska
  • M. Korjik
  • O. Kortner
  • P. Kostka
  • W. Kotlarski
  • C. Kotnig
  • T. Köttig
  • A. V. Kotwal
  • A. D. Kovalenko
  • S. Kowalski
  • J. Kozaczuk
  • G. A. Kozlov
  • S. S. Kozub
  • A. M. Krainer
  • T. Kramer
  • M. Krämer
  • M. Krammer
  • A. A. Krasnov
  • F. Krauss
  • K. Kravalis
  • L. Kretzschmar
  • R. M. Kriske
  • H. Kritscher
  • P. Krkotic
  • H. Kroha
  • M. Kucharczyk
  • S. Kuday
  • A. Kuendig
  • G. Kuhlmann
  • A. Kulesza
  • M. Kumar
  • M. Kumar
  • A. Kusina
  • S. Kuttimalai
  • M. Kuze
  • T. Kwon
  • F. Lackner
  • M. Lackner
  • E. La Francesca
  • M. Laine
  • G. Lamanna
  • S. La Mendola
  • E. Lançon
  • G. Landsberg
  • P. Langacker
  • C. Lange
  • A. Langner
  • A. J. Lankford
  • J. P. Lansberg
  • T. Lari
  • P. J. Laycock
  • P. Lebrun
  • A. Lechner
  • K. Lee
  • S. Lee
  • R. Lee
  • T. Lefevre
  • P. Le Guen
  • T. Lehtinen
  • S. B. Leith
  • P. Lenzi
  • E. Leogrande
  • C. Leonidopoulos
  • I. Leon-Monzon
  • G. Lerner
  • O. Leroy
  • T. Lesiak
  • P. Lévai
  • A. Leveratto
  • E. Levichev
  • G. Li
  • S. Li
  • R. Li
  • D. Liberati
  • M. Liepe
  • D. A. Lissauer
  • Z. Liu
  • A. Lobko
  • E. Locci
  • E. Logothetis Agaliotis
  • M. P. Lombardo
  • A. J. Long
  • C. Lorin
  • R. Losito
  • A. Louzguiti
  • I. Low
  • D. Lucchesi
  • M. T. Lucchini
  • A. Luciani
  • M. Lueckhof
  • A. J. G. Lunt
  • M. Luzum
  • D. A. Lyubimtsev
  • M. Maggiora
  • N. Magnin
  • M. A. Mahmoud
  • F. Mahmoudi
  • J. Maitre
  • V. Makarenko
  • A. Malagoli
  • J. Malclés
  • L. Malgeri
  • P. J. Mallon
  • F. Maltoni
  • S. Malvezzi
  • O. B. Malyshev
  • G. Mancinelli
  • P. Mandrik
  • P. Manfrinetti
  • M. Mangano
  • P. Manil
  • M. Mannelli
  • G. Marchiori
  • F. Marhauser
  • V. Mariani
  • V. Marinozzi
  • S. Mariotto
  • P. Marquard
  • C. Marquet
  • T. Marriott-Dodington
  • R. Martin
  • O. Martin
  • J. Martin Camalich
  • T. Martinez
  • H. Martinez Bruzual
  • M. I. Martínez-Hernández
  • D. E. Martins
  • S. Marzani
  • D. Marzocca
  • L. Marzola
  • S. Masciocchi
  • I. Masina
  • A. Massimiliano
  • A. Massironi
  • T. Masubuchi
  • V. A. Matveev
  • M. A. Mazzoni
  • M. McCullough
  • P. A. McIntosh
  • P. Meade
  • L. Medina
  • A. Meier
  • J. Meignan
  • B. Mele
  • J. G. Mendes Saraiva
  • F. Menez
  • M. Mentink
  • E. Meoni
  • P. Meridiani
  • M. Merk
  • P. Mermod
  • V. Mertens
  • L. Mether
  • E. Métral
  • M. Migliorati
  • A. Milanese
  • C. Milardi
  • G. Milhano
  • B. L. Militsyn
  • F. Millet
  • I. Minashvili
  • J. V. Minervini
  • L. S. Miralles
  • D. Mirarchi
  • S. Mishima
  • D. P. Missiaen
  • G. Mitselmakher
  • T. Mitshuhashi
  • J. Mnich
  • M. Mohammadi Najafabadi
  • R. N. Mohapatra
  • N. Mokhov
  • J. G. Molson
  • R. Monge
  • C. Montag
  • G. Montagna
  • S. Monteil
  • G. Montenero
  • E. Montesinos
  • F. Moortgat
  • N. Morange
  • G. Morello
  • M. Moreno Llácer
  • M. Moretti
  • S. Moretti
  • A. K. Morley
  • A. Moros
  • I. Morozov
  • V. Morretta
  • M. Morrone
  • A. Mostacci
  • S. Muanza
  • N. Muchnoi
  • M. Mühlegger
  • M. Mulder
  • M. Mulders
  • B. Müller
  • F. Müller
  • A. -S. Müller
  • J. Munilla
  • M. J. Murray
  • Y. Muttoni
  • S. Myers
  • M. Mylona
  • J. Nachtman
  • T. Nakamoto
  • M. Nardecchia
  • G. Nardini
  • P. Nason
  • Z. Nergiz
  • A. V. Nesterenko
  • J. A. Netto
  • A. Nettsträter
  • C. Neubüser
  • J. Neundorf
  • F. Niccoli
  • O. Nicrosini
  • Y. Nie
  • U. Niedermayer
  • J. Niedziela
  • A. Niemi
  • S. A. Nikitin
  • A. Nisati
  • J. M. No
  • M. Nonis
  • Y. Nosochkov
  • M. Novák
  • A. Novokhatski
  • J. M. O’Callaghan
  • C. Ochando
  • S. Ogur
  • K. Ohmi
  • K. Oide
  • V. A. Okorokov
  • Y. Okumura
  • C. Oleari
  • F. I. Olness
  • Y. Onel
  • M. Ortino
  • J. Osborne
  • P. Osland
  • T. Otto
  • K. Y. Oyulmaz
  • A. Ozansoy
  • V. Özcan
  • K. Özdemir
  • C. E. Pagliarone
  • H. F. Pais da Silva
  • E. Palmieri
  • L. Palumbo
  • A. Pampaloni
  • R. -Q. Pan
  • M. Panareo
  • O. Panella
  • G. Panico
  • G. Panizzo
  • A. A. Pankov
  • V. Pantsyrny
  • C. G. Papadopoulos
  • A. Papaefstathiou
  • Y. Papaphilippou
  • M. A. Parker
  • V. Parma
  • M. Pasquali
  • S. K. Patra
  • R. Patterson
  • H. Paukkunen
  • F. Pauss
  • S. Peggs
  • J. -P. Penttinen
  • G. Peón
  • E. E. Perepelkin
  • E. Perez
  • J. C. Perez
  • G. Perez
  • F. Pérez
  • E. Perez Codina
  • J. Perez Morales
  • M. Perfilov
  • H. Pernegger
  • M. Peruzzi
  • C. Pes
  • K. Peters
  • S. Petracca
  • F. Petriello
  • L. Pezzotti
  • S. Pfeiffer
  • F. Piccinini
  • T. Pieloni
  • M. Pierini
  • H. Pikhartova
  • G. Pikurs
  • E. Pilicer
  • P. Piminov
  • C. Pira
  • R. Pittau
  • W. Płaczek
  • M. Plagge
  • T. Plehn
  • M. -A. Pleier
  • M. Płoskoń
  • M. Podeur
  • H. Podlech
  • T. Podzorny
  • L. Poggioli
  • A. Poiron
  • G. Polesello
  • M. Poli Lener
  • A. Polini
  • J. Polinski
  • S. M. Polozov
  • L. Ponce
  • M. Pont
  • L. Pontecorvo
  • T. Portaluri
  • K. Potamianos
  • C. Prasse
  • M. Prausa
  • A. Preinerstorfer
  • E. Premat
  • T. Price
  • M. Primavera
  • F. Prino
  • M. Prioli
  • J. Proudfoot
  • A. Provino
  • T. Pugnat
  • N. Pukhaeva
  • S. Puławski
  • D. Pulikowski
  • G. Punzi
  • M. Putti
  • A. Pyarelal
  • H. Quack
  • M. Quispe
  • A. Racioppi
  • H. Rafique
  • V. Raginel
  • M. Raidal
  • N. S. Ramírez-Uribe
  • M. J. Ramsey-Musolf
  • R. Rata
  • P. Ratoff
  • F. Ravotti
  • P. Rebello Teles
  • M. Reboud
  • S. Redaelli
  • E. Renner
  • A. E. Rentería-Olivo
  • M. Rescigno
  • J. Reuter
  • A. Ribon
  • A. M. Ricci
  • W. Riegler
  • S. Riemann
  • B. Riemann
  • T. Riemann
  • J. M. Rifflet
  • R. A. Rimmer
  • R. Rinaldesi
  • L. Rinolfi
  • O. Rios Rubiras
  • T. Risselada
  • A. Rivetti
  • L. Rivkin
  • T. Rizzo
  • T. Robens
  • F. Robert
  • A. J. Robson
  • E. Rochepault
  • C. Roda
  • G. Rodrigo
  • M. Rodríguez-Cahuantzi
  • C. Rogan
  • M. Roig
  • S. Rojas-Torres
  • J. Rojo
  • G. Rolandi
  • G. Rolando
  • P. Roloff
  • A. Romanenko
  • A. Romanov
  • F. Roncarolo
  • A. Rosado Sanchez
  • G. Rosaz
  • L. Rossi
  • A. Rossi
  • R. Rossmanith
  • B. Rousset
  • C. Royon
  • X. Ruan
  • I. Ruehl
  • V. Ruhlmann-Kleider
  • R. Ruiz
  • L. Rumyantsev
  • R. Ruprecht
  • A. I. Ryazanov
  • A. Saba
  • R. Sadykov
  • D. Saez de Jauregui
  • M. Sahin
  • B. Sailer
  • M. Saito
  • F. Sala
  • G. P. Salam
  • J. Salfeld-Nebgen
  • C. A. Salgado
  • S. Salini
  • J. M. Sallese
  • T. Salmi
  • A. Salzburger
  • O. A. Sampayo
  • S. Sanfilippo
  • J. Santiago
  • E. Santopinto
  • R. Santoro
  • A. Sanz Ull
  • X. Sarasola
  • I. H. Sarpün
  • M. Sauvain
  • S. Savelyeva
  • R. Sawada
  • G. F. R. Sborlini
  • A. Schaffer
  • M. Schaumann
  • M. Schenk
  • C. Scheuerlein
  • I. Schienbein
  • K. Schlenga
  • H. Schmickler
  • R. Schmidt
  • D. Schoerling
  • A. Schoning
  • T. Schörner-Sadenius
  • M. Schott
  • D. Schulte
  • P. Schwaller
  • C. Schwanenberger
  • P. Schwemling
  • N. Schwerg
  • L. Scibile
  • A. Sciuto
  • E. Scomparin
  • C. Sebastiani
  • B. Seeber
  • M. Segreti
  • P. Selva
  • M. Selvaggi
  • C. Senatore
  • A. Senol
  • L. Serin
  • M. Serluca
  • N. Serra
  • A. Seryi
  • L. Sestini
  • A. Sfyrla
  • M. Shaposhnikov
  • E. Shaposhnikova
  • B. Y. Sharkov
  • D. Shatilov
  • J. Shelton
  • V. Shiltsev
  • I. P. Shipsey
  • G. D. Shirkov
  • A. Shivaji
  • D. Shwartz
  • T. Sian
  • S. Sidorov
  • A. Siemko
  • L. Silvestrini
  • N. Simand
  • F. Simon
  • B. K. Singh
  • A. Siódmok
  • Y. Sirois
  • E. Sirtori
  • R. Sirvinskaite
  • B. Sitar
  • T. Sjöstrand
  • P. Skands
  • E. Skordis
  • K. Skovpen
  • M. Skrzypek
  • E. Slade
  • P. Slavich
  • R. Slovak
  • V. Smaluk
  • V. Smirnov
  • W. Snoeys
  • L. Soffi
  • P. Sollander
  • O. Solovyanov
  • H. K. Soltveit
  • H. Song
  • P. Sopicki
  • M. Sorbi
  • L. Spallino
  • M. Spannowsky
  • B. Spataro
  • P. Sphicas
  • H. Spiesberger
  • P. Spiller
  • M. Spira
  • T. Srivastava
  • J. Stachel
  • A. Stakia
  • J. L. Stanyard
  • E. Starchenko
  • A. Y. Starikov
  • A. M. Staśto
  • M. Statera
  • R. Steerenberg
  • J. Steggemann
  • A. Stenvall
  • F. Stivanello
  • D. Stöckinger
  • L. S. Stoel
  • M. Stöger-Pollach
  • B. Strauss
  • M. Stuart
  • G. Stupakov
  • S. Su
  • A. Sublet
  • K. Sugita
  • L. Sulak
  • M. K. Sullivan
  • S. Sultansoy
  • T. Sumida
  • K. Suzuki
  • G. Sylva
  • M. J. Syphers
  • A. Sznajder
  • M. Taborelli
  • N. A. Tahir
  • M. Takeuchi
  • E. Tal Hod
  • C. Tambasco
  • J. Tanaka
  • K. Tang
  • I. Tapan
  • S. Taroni
  • G. F. Tartarelli
  • G. Tassielli
  • L. Tavian
  • T. M. Taylor
  • G. N. Taylor
  • A. M. Teixeira
  • G. Tejeda-Muñoz
  • V. I. Telnov
  • R. Tenchini
  • H. H. J. ten Kate
  • K. Terashi
  • A. Tesi
  • M. Testa
  • C. Tetrel
  • D. Teytelman
  • J. Thaler
  • A. Thamm
  • S. Thomas
  • M. T. Tiirakari
  • V. Tikhomirov
  • D. Tikhonov
  • H. Timko
  • V. Tisserand
  • L. M. Tkachenko
  • J. Tkaczuk
  • J. P. Tock
  • B. Todd
  • E. Todesco
  • R. Tomás Garcia
  • D. Tommasini
  • G. Tonelli
  • F. Toral
  • T. Torims
  • R. Torre
  • Z. Townsend
  • R. Trant
  • D. Treille
  • L. Trentadue
  • A. Tricoli
  • A. Tricomi
  • W. Trischuk
  • I. S. Tropin
  • B. Tuchming
  • A. A. Tudora
  • B. Turbiarz
  • I. Turk Cakir
  • M. Turri
  • T. Tydecks
  • J. Usovitsch
  • J. Uythoven
  • R. Vaglio
  • A. Valassi
  • F. Valchkova
  • M. A. Valdivia Garcia
  • P. Valente
  • R. U. Valente
  • A. -M. Valente-Feliciano
  • G. Valentino
  • L. Vale Silva
  • J. M. Valet
  • R. Valizadeh
  • J. W. F. Valle
  • S. Vallecorsa
  • G. Vallone
  • M. van Leeuwen
  • U. H. van Rienen
  • L. van Riesen-Haupt
  • M. Varasteh
  • L. Vecchi
  • P. Vedrine
  • G. Velev
  • R. Veness
  • A. Ventura
  • W. Venturini Delsolaro
  • M. Verducci
  • C. B. Verhaaren
  • C. Vernieri
  • A. P. Verweij
  • O. Verwilligen
  • O. Viazlo
  • A. Vicini
  • G. Viehhauser
  • N. Vignaroli
  • M. Vignolo
  • A. Vitrano
  • I. Vivarelli
  • S. Vlachos
  • M. Vogel
  • D. M. Vogt
  • V. Völkl
  • P. Volkov
  • G. Volpini
  • J. von Ahnen
  • G. Vorotnikov
  • G. G. Voutsinas
  • V. Vysotsky
  • U. Wagner
  • R. Wallny
  • L. -T. Wang
  • R. Wang
  • K. Wang
  • B. F. L. Ward
  • T. P. Watson
  • N. K. Watson
  • Z. Ws
  • C. Weiland
  • S. Weinzierl
  • C. P. Welsch
  • J. Wenninger
  • M. Widorski
  • U. A. Wiedemann
  • H. -U. Wienands
  • G. Wilkinson
  • P. H. Williams
  • A. Winter
  • A. Wohlfahrt
  • T. Wojtoń
  • D. Wollmann
  • J. Womersley
  • D. Woog
  • X. Wu
  • A. Wulzer
  • M. K. Yanehsari
  • G. Yang
  • H. J. Yang
  • W. -M. Yao
  • E. Yazgan
  • V. Yermolchik
  • A. Yilmaz
  • A. Yilmaz
  • H. -D. Yoo
  • S. A. Yost
  • T. You
  • C. Young
  • T. -T. Yu
  • F. Yu
  • A. Zaborowska
  • S. G. Zadeh
  • M. Zahnd
  • M. Zanetti
  • L. Zanotto
  • L. Zawiejski
  • P. Zeiler
  • M. Zerlauth
  • S. M. Zernov
  • G. Zevi Dell Porta
  • Z. Zhang
  • Y. Zhang
  • C. Zhang
  • H. Zhang
  • Z. Zhao
  • Y. -M. Zhong
  • J. Zhou
  • D. Zhou
  • P. Zhuang
  • G. Zick
  • F. Zimmermann
  • J. Zinn-Justin
  • L. Zivkovic
  • A. V. Zlobin
  • M. Zobov
  • J. Zupan
  • J. Zurita
  • the FCC Collaboration
Open Access
Regular Article
Part of the following topical collections:
  1. FCC-hh: The Hadron Collider

Abstract

In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries.

References

  1. 1.
    CERN Council, European Strategy Session of Council, CERN-Council-S/106 (May 30, 2013)Google Scholar
  2. 2.
    Future Circular Collider Study Kickoff Meeting, University of Geneva (February, 12–15, 2014), http://indico.cern.ch/e/fcc-kickoff
  3. 3.
    E. Todesco, F. Zimmermann (eds.), in Proceedings of EuCARD-AccNet-EuroLumi workshop: The High-Energy Large Hadron Collider – HE-LHC10, Malta, CERN-2011-003 (October 14–16, 2010), https://doi.org/arXiv:1111.7188 [physics.acc-ph]
  4. 4.
    J. Osborne, C. Waaijer, Pre-feasibility Assessment for an 80 km Tunnel Project at CERN Contribution to the update of the European strategy for particle physics, 165, (July 27, 2012), http://indico.cern.ch/event/175067/call-for-abstracts/165/file/1.pdf
  5. 5.
    Joint Snowmass-EuCARD/AccNet-HiLumi meeting “Frontier Capabilities for Hadron Colliders 2013” a.k.a. EuCARD VHE-LHC Day, CERN (February 21–22, 2013), http://indico.cern.ch/event/223094
  6. 6.
    A. Blondel, F. Zimmermann, A High Luminosity e+e−collider in the LHC tunnel to study the Higgs boson (2011), https://doi.org/arXiv:1112.2518 [hep-ex]
  7. 7.
    EuCARD LEP3 workshop (June 18, 2012); 2nd EuCARD LEP3 workshop (October 23, 2012); 3rd EuCARD TLEP3 workshop (January 10, 2013); 4th EuCARD TLEP workshop (April 4–5, 2013)Google Scholar
  8. 8.
    The TLEP Design Study Working Group, JHEP 01 164 (2014)Google Scholar
  9. 9.
    ATLAS Collaboration, Technical Design Report for the Phase-II Upgrade of the ATLAS muon spectrometer CERN-LHCC-2017-017, ATLAS-TDR-026 (CERN, Geneva, Switzerland, September, , 2017), https://cds.cern.ch/record/2285580
  10. 10.
    CMS Collaboration, The Phase-2 Upgrade of the CMS Muon Detectors CERN-LHCC-2017-012, CMS-TDR-016 (CERN, Geneva, Switzerland, September, , 2017), https://cds.cern.ch/record/2283189This is the final version, approved by the LHCC
  11. 11.
    LHCb Collaboration, Framework TDR for the LHCb Upgrade: Technical Design Report (April, 2012), https://cds.cern.ch/record/1443882, CERN-LHCC-2012-007, LHCb-TDR-12
  12. 12.
    M.L. Mangano, Physics at the FCC-hh, a 100 TeV pp Collider, CERN Yellow Reports: Monographs (CERN, Geneva, Switzerland, 2017), https://cds.cern.ch/record/2270978
  13. 13.
    O.S. Brüning, P. Collier, P. Lebrun, S. Myers, R. Ostojic, J. Poole, P. Proudlock, LHC Design Report, CERN Yellow Reports: Monographs (CERN, Geneva, Switzerland, 2004), http://cds.cern.ch/record/782076
  14. 14.
    I. Hinchliffe, A. Kotwal, M.L. Mangano, C. Quigg, L.-T. Wang, Int. J. Mod. Phys. A 30, 1544002 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    C. Helsens, D. Jamin, M. Selvaggi, Search for High-Mass Resonances at FCC-hh(CERN Document Server, October, 2018), https://cds.cern.ch/record/2642473
  16. 16.
    L. Gouskos, J. Incandela, A. Sung, Search for Stop Scalar Quarks at FCC-hh (October, 2018) https://cds.cern.ch/record/2642475
  17. 17.
    M. Selvaggi, Higgs Measurements at FCC-hh (October, 2018) https://cds.cern.ch/record/2642471.
  18. 18.
    V. Barger, P. Langacker, M. McCaskey, M.J. Ramsey-Musolf, G. Shaughnessy, Phys. Rev. D 77, 035005 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    A.V. Kotwal, J.M. No, M.J. Ramsey-Musolf, P. Winslow, Phys. Rev. D 94, 035022 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    D. Curtin, P. Meade, C.-T. Yu, JHEP 11, 127 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    M. Low, L.-T. Wang, JHEP 08, 161 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    M. Cirelli, F. Sala, M. Taoso, JHEP 10, 033 (2014)Google Scholar
  23. 23.
    S. Asai, M. Saito, R. Sawada, K. Terashi, Search for WIMPs with Disappearing Track Signatures at the FCC-hh (October, 2018) https://cds.cern.ch/record/2642474
  24. 24.
    P. Harris, V.V. Khoze, M. Spannowsky, C. Williams, Phys. Rev. D 93, 054030 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    T. du Pree, K. Hahn, P. Harris, C. Roskas, Cosmological constraints on Dark Matter models for collider searches, https://doi.org/arXiv:1603.08525 [hep-ph]
  26. 26.
    R. Mahbubani, P. Schwaller, J. Zurita, JHEP 06, 119 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    J. Bramante, N. Desai, P. Fox, A. Martin, B. Ostdiek, T. Plehn, Phys. Rev. D 93, 063525 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    LHeC Study Group Collaboration, J.L. Abelleira Fernandez et al., J. Phys. G 39, 075001 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    U. Schneekloth, The HERA Luminosity Upgrade (1998), DESY-HERA-98-05Google Scholar
  30. 30.
    M. Kumar, X. Ruan, R. Islam, A.S. Cornell, M. Klein, U. Klein, B. Mellado, Phys. Lett. B 764, 247 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    J. Jowett, HL-LHC Physics workshop (CERN, October 2017), Indico presentation https://indico.cern.ch/event/647676/contributions/2721134/
  32. 32.
    A. Dainese et al., Heavy ions at the future circular collider, CERN Yellow Report (2017) pp. 635–692, https://doi.org/arXiv:1605.01389 [hep-ph], Preprint CERN-TH-2016-107
  33. 33.
    L. Apolinário, J.G. Milhano, G.P. Salam, C.A. Salgado, Probing the time structure of the quark-gluon plasma with top quarks, https://doi.org/arXiv:1711.03105 [hep-ph], Preprint CERN-TH-2017-237
  34. 34.
    D. d’Enterria, K. Krajczár, H. Paukkunen, Phys. Lett. B 746, 64 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    D. d’Enterria, Nucl. Part. Phys. Proc. 289–290, 237 (2017)CrossRefGoogle Scholar
  36. 36.
    D. d’Enterria, A.M. Snigirev, Eur. Phys. J. C 78, 359 (2018)ADSCrossRefGoogle Scholar
  37. 37.
    C.-M. Ko, Y. Liu, J. Phys. G 43, 125108 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    Z. Chen, C. Greiner, K. Zhou, P. Zhuang, Phys. Lett. B 758, 434 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    D. d’Enterria, D.E. Martins, P. Rebello Teles, Prospects for γγ→ Higgs observation in ultraperipheral ion collisions at the Future Circular Collider, https://doi.org/arXiv:1712.10104 [hep-ph]
  40. 40.
    S. Furuseth, Head-On Beam-Beam Interactions in High-Energy Hadron Colliders. GPU-Powered Modelling of Nonlinear EffectsMaster thesis, CERN-THESIS-2017-279, 2017, https://cds.cern.ch/record/2299580
  41. 41.
    X. Buffat, D. Schulte, Broadband impedance of pumping holes and interconnects in the FCC-hh beams creen, in Proceedings of the IPAC’18 (Vancouver, BC, Canada, 2018)Google Scholar
  42. 42.
    M. Benedikt, D. Schulte, F. Zimmermann, Phys. Rev. ST Accel. Beams 18, 101002 (October 2015)ADSCrossRefGoogle Scholar
  43. 43.
    X. Buffat, D. Schulte, Evolution of the beam parameters during luminosity production in the future circular hadron collider, in Proceedings of the IPAC’16 (Busan, South Korea, 2016)Google Scholar
  44. 44.
    F. Antoniou et al., Can we predict luminosity?, in 7th Evian Workshop on LHC Beam Operation, (Evian-les-Bains, France, December 13–15, 2016), pp. 125–132.Google Scholar
  45. 45.
    R. Alemany Fernández, A. Apollonio, W. Bartmann, X. Buffat, A. Niemi, D. Schulte, M. Solfaroli Camillocci, L. Stoel, FCC-hh turn-around cycle, Geneva, Switzerland (December , 2016), Preprint CERN-ACC-2016-0341, https://cds.cern.ch/record/2239138
  46. 46.
    M. Benedikt, M. Hofer, and R. Tomas, Optics Design for the Low Luminosity Experiments in the FCC-hh, November 28, 2017, https://cds.cern.ch/record/2640686, CERN-THESIS-2017-418
  47. 47.
    R. Martin, M.I. Besana, F. Cerutti, A. Langner, R. Tomás, E. Cruz-Alaniz, B. Dalena, Phys. Rev. Accel. Beams 20, 081005 (2017)ADSCrossRefGoogle Scholar
  48. 48.
    D. Tommasini, Radiation limits of normal- and superconducting magnets, FCC Other Magnet Design Meeting (2017) https://indico.cern.ch/event/647002/contributions/2628503/attachments/1481854/2298287/Tommasini_Radiation.pdf
  49. 49.
    W. Bartmann et al., Beam transfer to the FCC-hh collider from a 3.3 TeV Booster in the LHC Tunnel, in Conference proceedings (June, 2015), http://jacow.org/ipac2015/papers/thpf089.pdf
  50. 50.
    T. Kramer, D. Barna, M. Barnes, W. Bartmann, F. Burkart, L. Ducimetière, B. Goddard, V. Senaj, T. Stadlbauer, D. Woog, Considerations for the injection and extraction kicker systems of a 100 TeV Centre-of-Mass FCC-hh Collider, in Conference Proceedings (May 8–13, 2016), DOI: 10.18429/JACoW-IPAC2016-THPOR049Google Scholar
  51. 51.
    J.A. Uythoven et al., Injection protection upgrade for the HL-LHC, in Conference Proceedings (June, 2015), http://jacow.org/ipac2015/papers/tupty051.pdf
  52. 52.
    W. Bartmann, M. Atanasov, M.J. Barnes, J. Borburgh, F. Burkart, B. Goddard, T. Kramer, A. Lechner, A. Sanz Ull, R. Schmidt, L.S. Stoel, R. Ostojic, J. Rodziewicz, P. van Trappen, D. Barna, Phys. Rev. Accel. Beams 20, 031001 (March,2017)ADSCrossRefGoogle Scholar
  53. 53.
    F. Burkart et al., Conceptual design considerations for the 50 TeV FCC beam dump insertion, in Conference Proceedings (June, 2016), DOI: 10.18429/JACoW-IPAC2016-TUPMR047Google Scholar
  54. 54.
    O.S. Brüning et al. (eds.), LHC Design Report v.1 : The LHC Main Ring, CERN-2004-003-V1 (2004)Google Scholar
  55. 55.
    R. Bruce, M. Fiascaris, D. Mirarchi, and S. Redaelli, First design of a proton collimation system for 50 TeV FCC-hh, in Proceedings of the IPAC’16, Busan, Korea (2016), p. 2425Google Scholar
  56. 56.
    M. Fiascaris et al., Conceptual solution for a beam halo collimation system of the Future Circular hadron-hadroCollider (FCC-hh), submitted to Nucl. Instr. Meth. Phys. Res. A (2018)Google Scholar
  57. 57.
    R.W. Aßmann, Collimators and beam absorbers for cleaning and machine protection, in Proceedings of the LHC Project Workshop – Chamonix XIV, Chamonix, France (2005), p. 261Google Scholar
  58. 58.
    G. Robert-Demolaize, Design and performance optimization of the lhc collimation system, Ph.D. thesis, Universite Joseph Fourier, Grenoble, 2006Google Scholar
  59. 59.
    R.W. Aßmann et al., The final collimation system for the LHC, in Proceedings of the EPAC’06, Edinburgh, Scotland (2006) p. 986Google Scholar
  60. 60.
    C. Bracco, Commissioning scenarios and tests for the LHC collimation system, Ph.D. thesis, EPFL Lausanne, 2008Google Scholar
  61. 61.
    R. Bruce, R.W. Assmann, V. Boccone, C. Bracco, M. Brugger, M. Cauchi, F. Cerutti, D. Deboy, A. Ferrari, L. Lari, A. Marsili, A. Mereghetti, D. Mirarchi, E. Quaranta, S. Redaelli, G. Robert-Demolaize, A. Rossi, B. Salvachua, E. Skordis, C. Tambasco, G. Valentino, T. Weiler, V. Vlachoudis, D. Wollmann, Phys. Rev. ST Accel. Beams 17, 081004 (August, 2014)ADSCrossRefGoogle Scholar
  62. 62.
    R. Bruce, C. Bracco, R. De Maria, M. Giovannozzi, A. Mereghetti, D. Mirarchi, S. Redaelli, E. Quaranta, B. Salvachua, Nucl. Instr. Meth. Phys. Res. A 848, 19 (2017)ADSCrossRefGoogle Scholar
  63. 63.
    G. Apollinari et al., (eds.), High-Luminosity Large Hadron Collider (HL-LHC): Technical Design Report, CERN-2017-007-M (2017)Google Scholar
  64. 64.
    R. Bruce, A. Marsili, S. Redaelli, Cleaning performance with 11T dipoles and local dispersion suppressor collimation at the lhc, in Proceedings of the IPAC’14, Dresden, Germany (2014), p. 170, http://jacow.org/IPAC2014/papers/mopro042.pdf
  65. 65.
    B. Auchmann et al., Power deposition in lhc magnets with and without dispersion suppressor collimators downstream of the betatron cleaning insertion, in Proceedings of the IPAC’14, Dresden, Germany (2014), p. 112Google Scholar
  66. 66.
    R. Bruce et al., Status of the FCC-hh collimation system, in Proceedings of the IPAC’17, Copenhagen, Denmark (2017), p. 64Google Scholar
  67. 67.
    C. Bahamonde Castro et al., Energy deposition in the betatron collimation insertion of the 100 TeV future circular collider, in Proceedings of the IPAC’17, Copenhagen, Denmark (2017), p. 68Google Scholar
  68. 68.
    A.M. Krainer, Design & Simulation of new protection devices in the dispersion suppressor regions for the Future Circular Collider Project Master’s thesis, TU Graz, 2018Google Scholar
  69. 69.
    A. Fassò, A. Ferrari, J. Ranft, P.R. Sala, FLUKA: a multi-particle transport code Report CERN-2005-10 (CERN, Geneva, Switzerland, 2005), Also available as INFN/TC_05/11 and SLAC-R-773Google Scholar
  70. 70.
    T.T. Böhlen, F. Cerutti, M.P.W. Chin, A. Fassò, A. Ferrari, P.G. Ortega, A. Mairani, P.R. Sala, G. Smirnov, V. Vlachoudis, Nucl. Data Sheets 120, 211 (2014)ADSCrossRefGoogle Scholar
  71. 71.
    M.I. Besana et al., Update on energy deposition in betatron cleaning insertion, Presentation at the FCC Collimation Design Meeting (July 17, 2017), https://indico.cern.ch/event/653079/
  72. 72.
    M. Varasteh et al., Energy deposition studies with 30 cm TCP, Presentation at the FCC Collimation Design Meeting (October 20, 2017), https://indico.cern.ch/event/674036/
  73. 73.
    M. Varasteh et al., Energy deposition update with thicker TCP and no skew, Presentation at the FCC Collimation Design Meeting (November 20, 2017), https://indico.cern.ch/event/674036/
  74. 74.
    M. Varasteh et al., Beam loss in collimators, in Fourth Annual Meeting of the Future Circular Collider study, Amsterdam, The Netherlands, (April, 2018), https://indico.cern.ch/event/656491/contributions/2930758/
  75. 75.
    G. Gobbi et al., Thermo-mechanical studies of collimators for slow losses in FCC-hh, Presentation at the FCC Collimation Design Meeting (December 8, 2017), https://indico.cern.ch/event/685664/
  76. 76.
    F. Cara, G. Gobbi, M. Pasquali, Updates on thermomechanical studies of FCC collimators, in Presentation at the FCC Collimation Design Meeting (June 252018), https://indico.cern.ch/event/738429/
  77. 77.
    R. Bruce et al., Status of collimation system studies, in Fourth Annual Meeting of the Future Circular Collider study, Amsterdam, The Netherlands (April, 2018), https://indico.cern.ch/event/656491/contributions/2930755/
  78. 78.
    D. Boutin et al., Updates on the optics of the future Hadron–Hadron collider FCC-hh in Proceedings of the 8th IPAC’17, Copenhagen, Denmark (May 14–19, 2017), p. TUPVA002http://inspirehep.net/record/1626340/files/tupva002.pdf
  79. 79.
    R. Alemany Fernández et al., First results for a FCC-hh ring optics design CERN-ACC-2015-0035, (CERN, Geneva, Switzerland, April, 2015), Preprint CERN-ACC-2015-003Google Scholar
  80. 80.
    R. Bruce et al., Status of the FCC-hh Collimation System in Proceedings of 8th the IPAC’17, Copenhagen, Denmark (May 14–19, 2017) p. MOPAB001Google Scholar
  81. 81.
    A. Seryi et al., Overview of design development of FCC-hh experimental interaction regions in Proceedings of the 8th IPAC’17, Copenhagen, Denmark (May 14–19, 2017) p. TUPVA040, http://inspirehep.net/record/1626415/files/tupva040.pdf
  82. 82.
    M. Boege and F. Schmidt, Tracking studies for the LHC optics 4 at injection energy, (June, 1997), CERN-LHC-Project-Report-103, http://cds.cern.ch/record/327303
  83. 83.
    E. Cruz-Alainz et al., Methods to increase the dynamic aperture of the FCC-hh lattice, in Proceedings of the 9th IPAC’18 (2018), http://jacow.org/ipac2018/papers/thpak145.pdf
  84. 84.
    O.S. Brüning, S.D. Fartoukh, Field Quality Specification for the LHC Main Dipole Magnets LHC-Project-Report-501. CERN-LHC-Project-Report-501, (CERN, Geneva, Switzerland, October, 2001) Preprint LHC-Project-Report-501, https://cds.cern.ch/record/522049
  85. 85.
    B. Dalena et al., Dipole field quality and dynamic aperture for FCC-hh in Proceedings of the 9th IPAC’18 (2018), http://jacow.org/ipac2018/papers/mopmf024.pdf
  86. 86.
    D. Boutin et al., Updates on the optic correction of FCC-hh, in Proceedings of the 9th IPAC’19 (2018), http://jacow.org/ipac2018/papers/mopmf023.pdf
  87. 87.
    Y. Nosochkov and D.M. Ritson, The provision of IP crossing angles for the SSC, in Proceedings of the PAC’93 (May, 1993), pp. 125–127Google Scholar
  88. 88.
    M. Boege, F. Schmidt, Low secondary electron yield of laser treated surfaces of copper, aluminium and stainless steel, in Proceedings of the 7th IPAC’16, Busan, Korea (May 8–13, 2016), pp. 1089–1092 Google Scholar
  89. 89.
    R. Valizadeh, O.B. Malyshev, S. Wang, T. Sian, M.D. Cropper, N. Sykes, Appl. Surf. Sci. 404, 370 (2017)ADSCrossRefGoogle Scholar
  90. 90.
    R. Bartolini, E. Koukovini-Platia, A. Morgan, G. Rehm, Study of single bunch instabilities with transverse feedback at diamondin Proceedings of the 8th IPAC’17, Copenhagen, Denmark (May 14–19, 2017), pp. 4489–4492Google Scholar
  91. 91.
    N. Klinkenberg, Computational studies of collective effects in particle beams in the Future Circular Collider Master’s thesis, Westfälische Hochschule in cooperation with CERN, 2018, Bachelor thesisGoogle Scholar
  92. 92.
    X. Buffat, W. Herr, N. Mounet, T. Pieloni, S. White, Phys. Rev. ST Accel. Beams 17, 111002 (November, 2014)ADSCrossRefGoogle Scholar
  93. 93.
    C. Tambaso et al., Beam-beam effects, octupoles and Landau damping, Presentation at the EuroCirCol Meeting (October 9–10, 2017), https://indico.cern.ch/event/669849/contributions/2740676/attachments/1537807/2410440/FFC_eurocircol_landau_beam_beam.pdf
  94. 94.
    C. Tambasco et al., Landau damping studies for the FCC: octupole magnets, electron lens and beam-beam effects, in Proceedings of the IPAC’18, THPAF074 (2018)Google Scholar
  95. 95.
    T. Argyropoulos, H. Bartosik, N. Biancacci, X. Buffat, J.E. Muller, W. Herr, G. Iadarola, A. Lasheen, K. Li, A. Oeftiger, IEEE Trans. Nucl. Sci. 63 1001 (April, 2016)ADSCrossRefGoogle Scholar
  96. 96.
    A.A. Gorzawski, Luminosity control and beam orbit stability with beta star leveling at LHC and HL-LHC, Ph.D. thesis, EPFL Lausanne, 2016Google Scholar
  97. 97.
    X. Buffat et al., Colliding during the squeeze and beta star levelling in the LHC, in Proceedings of the IPAC’13, Shanghai, China (May, 2013), http://jacow.org/IPAC2013/papers/tupfi033.pdf
  98. 98.
    Y. Alexahin, A. Burov, V. Shiltsev, A. Valishev, Phys. Rev. Lett. 119, 134802(September, 2017)ADSCrossRefGoogle Scholar
  99. 99.
    W. Fischer, X. Gu, Z. Altinbas, M. Costanzo, J. Hock, C. Liu, Y. Luo, A. Marusic, R. Michnoff, T.A. Miller, A.I. Pikin, V. Schoefer, P. Thieberger, S.M. White, Phys. Rev. Lett. 115, 264801 (December, 2015)ADSCrossRefGoogle Scholar
  100. 100.
    A. Grudiev, Phys. Rev. ST Accel. Beams 17, 011001 (January, 2014)ADSCrossRefGoogle Scholar
  101. 101.
    S. De Santis et al., Wideband vertical intra-bunch feedback at the SPS –2015 results and path forward in Proceedings of the IPAC’15, Richmond, VA, USA (May 3–8, 2015), pp. 1353–1355Google Scholar
  102. 102.
    M.A. Furman, Electron Cloud Effects in Accelerators in Proceedings of the 5th Workshop on Electron-Cloud Effects (ECLOUD’12), La Biodola, Isola d’Elba, Italy (June 5–9, 2013)Google Scholar
  103. 103.
    C. Yin Vallgren, G. Arduini, J. Bauche, S. Calatroni, P. Chiggiato, K. Cornelis, P. Costa Pinto, B. Henrist, E. Méetral, H. Neupert, G. Rumolo, E. Shaposhnikova, M. Taborelli, Phys. Rev. ST Accel. Beams 14 (July, 2011)Google Scholar
  104. 104.
    X. Buffat et al., Long range beam-beam effects in the lhc (CERN, Geneva, Switzerland, 2014), https://doi.org/arXiv:1409.4942 [physics.acc-ph] http://arxiv.org/abs/1409.4942.
  105. 105.
    T. Pieloni et al., Two beam effects, in Proceedings of the 2014 Evian Workshop on LHC beam operation (2014) , pp. 69–79, http://cds.cern.ch/record/2289585, CERN-ACC-2014-0319
  106. 106.
    G. Arduini et al., Long-range and head-on beam-beam: what are the limits?, in Proceedings of the 7th Evian Workshop on LHC Beam Operation: Evian-les-Bains, France, 2016(CERN, Geneva, Switzerland, 2017), pp. 133–1402014, http://cds.cern.ch/record/2289585
  107. 107.
    SixTrack Code, Website, http://sixtrack.web.cern.ch/SixTrack/
  108. 108.
    T. Pieloni, A study of beam-beam effects in hadron colliders with a large number of bunches, Ph.D. thesis, EPFL (2008)Google Scholar
  109. 109.
    M. Giovannozzi, Dynamic Aperture: Simulations vs. Experiments and first DA results in the LHC, in 14th HiLumi WP2 Task Leader Meeting (August, 2013), https://indico.cern.ch/getFile.py/accesscontribId=2&resId=0&materialId=slides&confId=267840
  110. 110.
    T. Pieloni et al., Beam-beam long-range studies and possible reduction of the crossing angle in the LHC, Presentation at the LHC Machine Committee (August, 2016) Google Scholar
  111. 111.
    M. Crouch et al., Dynamic aperture studies of the long-range beam-beam interaction at the LHC, in Proceedings of the 8th IPAC’17, Copenhagen, Denmark (May 14–19, 2017), pp. 3840–3843, http://jacow.org/ipac2017/papers/thpab056.pdf
  112. 112.
    M. Crouch, Luminosity performance limitations due to the beam-beam interaction in the Large Hadron ColliderPh.D. thesis, Manchester University, 2017Google Scholar
  113. 113.
    M. Giovannozzi, Phys. Rev. ST Accel. Beams 15, 024001 (February, 2012) ADSCrossRefGoogle Scholar
  114. 114.
    X. Buffat, Transverse beams stability studies at the Large Hadron Collider, Ph.D. thesis, EPFL, 2015Google Scholar
  115. 115.
    H. Grote, L.H.A. Leunissen, F. Schmidt, LHC Dynamic Aperture at Collision, LHC-PROJECT-NOTE-197 (CERN, Geneva, Switzerland, August, 1999), Preprint LHC-PROJECT-NOTE-197 https://cds.cern.ch/record/691988
  116. 116.
    Y. Luo and F. Schmidt, Dynamic Aperture Studies for LHC Optics Version 6.2 at Collision, (CERN, Geneva, Switzerland, January, 2003), Preprint LHC-PROJECT-NOTE-310, http://cds.cern.ch/record/692074
  117. 117.
    T. Pieloni et al., Beam-Beam Studies for FCC-hh, in 3rd Annual Meeting of the Future Circular Collider Study, Berlin, Germany (May 29–June 2, 2017)Google Scholar
  118. 118.
    J. Barranco García et al., Beam-Beam Studies for FCC-hh, in Proceedings of the IPAC’17, Copenhagen, Denmark(JACoW, Geneva, Switzerland, May 14–19, 2017), pp. 2109–2112, http://jacow.org/ipac2017/papers/tupva026.pdf)
  119. 119.
    J. Barranco García, EuroCirCol Meeting Oct 2017, Presentation at the LHC Machine Committee (October 31, , 2017)Google Scholar
  120. 120.
    W. Herr, Features and implications of different LHC crossing schemes LHC-Project-Report-628. CERN-LHC-Project-Report-628 (CERN, Geneva, Switzerland, February, 2003) Preprint LHC-Project-Report-628, https://cds.cern.ch/record/604005
  121. 121.
    T. Pieloni et al., Colliding High Brightness Beams in the LHC, in Proceedings of the HB’ 12, Beijing, China (2012), p. MOP250Google Scholar
  122. 122.
    J. Barranco García et al., Probing the behaviour of high brightness bunches in collision at 6.5 TeV and the interplay with an external source of noise (MD1433)(April 2017), https://cds.cern.ch/record/2261037, CERN-ACC-NOTE-2017-0030
  123. 123.
    S.V. Furuseth, Head-on beam-beam interactions in high-energy hadron colliders, GPU-Powered Modelling of Nonlinear Effects Master’s thesis , NTNU, 2017, CERN-THESIS-2017-279Google Scholar
  124. 124.
    V.A. Lebedev, AIP Conf. Proc. 326, 396 (1995)ADSCrossRefGoogle Scholar
  125. 125.
    M. Albert et al. MD 400: LHC emittance growth in presence of an external source of noise during collision (January, 2016), https://cds.cern.ch/record/2125228, CERN-ACC-NOTE-2016-0020
  126. 126.
    X. Buffat et al., Beam-Beam Studies for FCC-hh, Presentation at the HL-LHC Collaboration Meeting. (Madrid, Spain, November 15, 2017), https://indico.cern.ch/event/647714/contributions/2646114/attachments/1558511/2452144/2017-11-15_BeamBeamInstability-expanded.pdf
  127. 127.
    L. Jin, O. Kheawpum, J. Shi, Proc. AIP’04 693, 265 (2004)Google Scholar
  128. 128.
    J. Barranco García and T. Pieloni, Global compensation of long-range beam-beam effects with octupole magnets: dynamic aperture simulations for the HL-LHC case and possible usage in LHC and FCC (May, 2017), https://cds.cern.ch/record/2263347, CERN-ACC-NOTE-2017-0036
  129. 129.
    D. Schulte, Preliminary collider baseline parameters (CERN, Geneva, Switzerland, 2015), Preprint CERN-ACC-2015-0132, https://cds.cern.ch/record/2059230
  130. 130.
    A. Apollonio, K. Foraz, A. Niemi, Considerations on Operation Schedule and Maintenance Aspects of FCC-hh (CERN, Geneva, Switzerland, May 2018), Preprint CERN-ACC-2018-0013, https://cds.cern.ch/record/2317097
  131. 131.
    W. Bartmann et al., High Energy Booster Options for a Future Circular Collider at, no. 7 in International Particle Accelerator Conference. JaCoW, Geneva, Switzerland, June, 2016, Proceedings of the IPAC’16, Busan, Korea (May 8–13, 2016)Google Scholar
  132. 132.
    D. Jacquet, Injection, in 6th Evian Workshop on LHC beam operation, edited by B. Goddard and S. Dubourg (CERN, Geneve, October, 2016) pp. 49–52Google Scholar
  133. 133.
    R. Alemany Fernández et al., FCC-hh turn-around cycle (CERN, 2016)Google Scholar
  134. 134.
    O.S. Brüning et al., ed., The LHC main ring, Vol 1 of LHC Design report (CERN, Geneva, Switzerland, June, 2004)Google Scholar
  135. 135.
    M. Pojer, LHC operation, in8th LHC Operations Evian Workshop (CERN, 2017)Google Scholar
  136. 136.
    A. Apollonio, L. Ponce, and B. Todd, LHC Availability 2016: Proton Run, in 7th Evian Workshop on LHC beam operation (CERN, Geneva, Switzerland, December, 2016) pp. 53–58, https://cds.cern.ch/record/2293511
  137. 137.
    A. Apollonio, L. Ponce, C. Roderick, B. Todd, D. Walsh, LHC Availability 2017: Proton Run, in 8th Evian Workshop on LHC beam operation, CERN-ACC-2019-012, CERN, Geneva, Switzerland, December, 2017pp. 35–46, https://cds.cern.ch/record/2654224
  138. 138.
    W. Bartmann et al., Conceptional Design Considerations for a 1.3 TeV superconducting SPS (sc SPS), in Proceedings of the IPAC’17, Copenhagen, Denmark, no. 8 in International Particle Accelerator Conference (JaCoW, Geneva, Switzerland, May 14–19, 2017), pp. 3323–3326Google Scholar
  139. 139.
    A. Apollonio et al., Phys. Rev. Accelerators Beams 19, 121003 (December, 2016)ADSCrossRefGoogle Scholar
  140. 140.
    J. Gutleber, A. Niemi, J.P. Penttinen, An Open Modelling Approach for Availability and Reliability of Systems – OpenMARS CERN-ACC-2018-0006 (CERN, Geneva, Switzerland, January, 2018), Preprint CERN-ACC-2018-0006, https://cds.cern.ch/record/2302387
  141. 141.
    J.P. Penttinen, A. Niemi, J. Gutleber, K.T. Koskinen, E. Coatanea, J. Laitinen, Reliab. Eng. Syst. Saf. 183, 387 (2019)CrossRefGoogle Scholar
  142. 142.
    J.M. Jowett et al., The 2016 proton-nucleus run of the LHC, in Proceedings of the IPAC’17, Denmark, Copenhagen (2017)Google Scholar
  143. 143.
    M. Schaumann, Phys. Rev. ST Accel. Beams 18 (2015) 091002ADSMathSciNetCrossRefGoogle Scholar
  144. 144.
    M.L. Mangano, Heavy ions at the future circular collider, , chapter 4 in Physics at the FCC–hh, a 100 TeV pp collider, Vol. 3, CERN Yellow Reports: Monographs (CERN, CERN, Geneva, Switzerland, 2017, pp. 635–691, CERN–2017–003–MGoogle Scholar
  145. 145.
    J.M. Jowett, M. Schaumann, A first look at the performance for Pb-Pb and p-Pb collisions in FCC-hh, Presentation at FCC Study Kickoff Meeting, Geneva, Switzerland (2014)Google Scholar
  146. 146.
    J.M. Jowett et al., FCC-hh as a heavy-ion collider, Presentation at FCC Week, Washington DC, USA (2015)Google Scholar
  147. 147.
    A. Dainese et al., Heavy-ion physics studies for the Future Circular Collider, Presentation at FCC Week, Rome, Italy (2016)Google Scholar
  148. 148.
    M. Schaumann et al., Heavy-ions at the FCC-hh, Presentation at the FCC Week, Berlin, Germany (2017), https://indico.cern.ch/event/556692/contributions/2484258/
  149. 149.
    K. Fuchsberger, Turnaround – analysis and possible Improvements, in Proceedings of the 7th Evian Workshop on LHC beam operation (2017)Google Scholar
  150. 150.
    Indico presentation (March, 2016) http://indico.cern.ch/event/505557/contribution/1/
  151. 151.
    U. Klein, Higgs Physics at the LHeC, Contribution to ICHEP, Valencia (2014)Google Scholar
  152. 152.
    M. Klein, Ann. Phys. 528, 138 (2016)MathSciNetCrossRefGoogle Scholar
  153. 153.
    PERLE Collaboration, G. Arduini et al., Powerful Energy Recovery Linac Experiments, Conceptual Design Report, accepted for publication in Journal of Physics G. (2018) https://doi.org/arXiv:1705.08783 [physics.acc-ph].
  154. 154.
    O. Brüning, M. Klein, F. Zimmermann, The LHeC as a Higgs Boson Factory, in Proceedings of the 4th IPAC’13, Shanghai, China (May 12–172013), p. MOPWO054, http://JACoW.org/IPAC2013/papers/mopwo054.pdf, CITATION = INSPIRE-1338636
  155. 155.
    O.S. Brüning, M. Klein, Mod. Phys. Lett. A 28, 1330011 (2013) ADSCrossRefGoogle Scholar
  156. 156.
    G. Apollinari et al., High-Luminosity Large Hadron Collider (HL-LHC): Preliminary Design Report, Yellow Report CERN-2015-005 (2015)Google Scholar
  157. 157.
    D. Schulte et al., FCC-he parameters, Talk presented at the FCC Workshop, Rome (2016)Google Scholar
  158. 158.
    F. Zimmermann, FCC accelerator parameters, Talk presented at the FCC Physics Week, Geneva, CERN (2017)Google Scholar
  159. 159.
    D. Schulte, Study of electromagnetic and hadronic background in the interaction region of the TESLA collider, DESY-TESLA-97-08 (1997)Google Scholar
  160. 160.
    H. Artosik and J. Jowett, LHC Performance Workshop, Chamonix, France, (January, 2017), https://indico.cern.ch/event/580313/
  161. 161.
    R. Martin, R. Tomas Garcia, Length Optimization of the Detector Region Dipoles in LHeC and FCC-eh, CERN-ACC-2018-0042 (CERN, Geneva, Switzerland, October, 2018), https://cds.cern.ch/record/2644892
  162. 162.
    R. Valente et al., Baseline design of a 16 T costheta bending dipole for the future circular collider, Presented at the ASC, Seattle, USA (2018)Google Scholar
  163. 163.
    R. Wolf , Field error naming conventions for the LHC, LHC-M-ES-0001, EDMS90250 (2001), Engineering SpecificationGoogle Scholar
  164. 164.
    S. Bermudez, Persistent Currents Magnetization Effects in The 16 T Main Dipoles for the Future Circular Collider, CERN EDMS 2036614, (2018)Google Scholar
  165. 165.
    T. Salmi, et al. Quench protection of the 16 T Nb3Sn dipole magnets designed for the Future Circular Collider, Presented at the ASC, Seattle, USA (2018)Google Scholar
  166. 166.
    C. Pes, et al. Magnetic and Mechanical Design of the Block-coil Dipole Option for the Future Circular Collider, Presented at the ASC, Seattle, USA (2018)Google Scholar
  167. 167.
    F. Toral, Magnetic and mechanical design of a 16 T common coil dipole for FCC, FCC Week (2018) https://indico.cern.ch/event/656491/contributions/2920132/attachments/1629665/2597178/FCCweek2018_common_coil_ftoral.pdf
  168. 168.
    B. Auchmann, L. Brouwer, S. Caspi, J. Gao, G. Montenero, M. Negrazus, G. Rolando, S. Sanfilippo Trans, IEEE Trans. Appl. 28, 1 (April, 2018)CrossRefGoogle Scholar
  169. 169.
    A. Ballarino et al. The CERN FCC conductor development program: a world-wide effort for the future generation of high-field magnets, submitted to IEEE Trans. Appl. Supercond., forthcoming on IEEE XPloreGoogle Scholar
  170. 170.
    C. Lorin et al. Exploration of two layer designs of the Future Circular Collider Main Quadrupoles, Presented at the ASC, Seattle, USA (2018)Google Scholar
  171. 171.
    L. Tavian, Cryogenics, FCC Collider Kickoff Meeting, Univ. Geneva, Switzerland, (2014)https://indico.cern.ch/event/282344/contributions/1630775/
  172. 172.
    O. Boine-Frankenheim, FCC-hh Impedances, FCC Week, Rome, Italy (2016)https://indico.cern.ch/event/438866/contributions/1085013/.
  173. 173.
    R. Kersevan, Synchrotron radiation & vacuum concepts, FCC Collider Kickoff Meeting, Univ. Geneva, Switzerland (2014), https://indico.cern.ch/event/282344/contributions/1630665/.
  174. 174.
    O. Malyshev, et al. Laser Treatment at STFC, FCC-hh impedance and beam screen Workshop(March, 2017) https://indico.cern.ch/event/619380/contributions/2527422/
  175. 175.
    L.A.G. Gomez, Results on the FCC-hh Beam Screen Prototype at the KIT Electron Storage Ring, (FCC Week, Amsterdam, The Netherlands, April 2018), https://indico.cern.ch/event/656491/contributions/2938816/
  176. 176.
    C. Garion, FCC-hh Beam Screen Studies and Beam Screen Cooling Scenarios (FCC Week, Rome, Italy 2016), https://indico.cern.ch/event/438866/contributions/1084911/
  177. 177.
    S. Calatroni, IEEE Trans. Appl. Supercond. 26, 1 (April, 2016)CrossRefGoogle Scholar
  178. 178.
    V. Baglin, Cryogenic Beam Vacuum Specificities Applicable to FCC hh, FCC Week, Washington, DC (2015), https://indico.cern.ch/event/340703/contributions/802149/
  179. 179.
    J.F. Topham, FCC-hh Beam Screen Design, WP4 EuroCirCol Coordination Meeting 05, ALBA light source (November 7–9, 2016), https://indico.cern.ch/event/579868/
  180. 180.
    C. Kotnig, Cold mass cooling with supercritical helium, in 2nd FCC Cryogenics Day(Dresden, Germany, 2016)Google Scholar
  181. 181.
    I. Bellafont, Photon Tracing and Gas-density Profile in the FCC-hh (FCC Week, Berlin, Germany, 2017), https://indico.cern.ch/event/556692/contributions/2487660/
  182. 182.
    I. Bellafont, et al. Study of the Beam Induced Effects in the FCC-hh Vacuum Chamber, submitted to PR-AB (2018)Google Scholar
  183. 183.
    L. Mether, CERN-EPFL, Personal Communication, and FCC-hh Electron Cloud (FCC Week, Berlin, Germany 2017), https://indico.cern.ch/event/556692/contributions/2567985/
  184. 184.
    E. Shaposhnikova, Longitudinal beam dynamics and RF requirements, in Third Annual Meeting of the Future Circular Collider Study, Berlin, Germany, 2017 (CERN, 2017), https://indico.cern.ch/event/556692/contributions/2484257/attachments/1467380/2269248/FCChh_RF_Berlin.pdf
  185. 185.
    S. Aull, O. Brunner, A. Butterworth, N. Schwerg, Material Options for the Superconducting RF System of the Future Circular Collider, (CERN, Geneva, Switzerland, 2018), Preprint CERN-ACC-2018-0019, http://cds.cern.ch/record/2625126
  186. 186.
    E. Palmieri, C. Pira, Coating studies on 6 GHz seamless cavities, in Fourth Annual Meeting of the Future Circular Collider study (Amsterdam, The Netherlands, 2018)Google Scholar
  187. 187.
    W.V. Delsolaro, Thin Film Research: CERN Experience and Possible Future Applications(TESLA Technology Collaboration (TTC) Meeting, Milano, Italy, 2018), https://agenda.infn.it/contributionDisplay.py?sessionId=12&contribId=4&confId=13791
  188. 188.
    D.L. Hall, S. Posen, Supercond. Sci. Technol. 30, 033004 (2017)ADSCrossRefGoogle Scholar
  189. 189.
    K. Ilyina-Brunner, Magnetron Sputtering of Nb3Sn thin films on copper for SRF application, in Fourth Annual Meeting of the Future Circular Collider Study, Amsterdam, The Netherlands (2018), https://indico.cern.ch/event/656491/contributions/2918336/attachments/1628654/2595685/Ilyina_Nb3Sn_FCC2018.pdf
  190. 190.
    E. Montesinos, FPC challenges and perspectives for FCC, in Third Annual Meeting of the Future Circular Collider Study, Berlin, Germany, 2017, (CERN, 2017), https://indico.cern.ch/event/556692/contributions/2484366/attachments/1466409/2269379/20170530_FCC_week_FPC.pdf
  191. 191.
    G. Apollinari, et al. High-Luminosity Large Hadron Collider (HL-LHC)in Preliminary Design Report. CERN Yellow Report (2015)Google Scholar
  192. 192.
    K. Papke, A. Carvalho, C. Zanoni, A. Grudiev, Multiphysics simulations of the Wide Opened Waveguide Crab-Cavity, inProceedings of the SRF’17, Lanzhou, China (2017)Google Scholar
  193. 193.
    J.R. Delayen, S.U.D. Silva, Phys. Rev. ST Accel. Beams 16, 012004 (2013)ADSCrossRefGoogle Scholar
  194. 194.
    I. Syratchev, Introduction to HEIKA. Tentative structure and objectives CLIC Workshop 2015 (CERN, Geneva, Switzerland, CERN, 2015), https://indico.cern.ch/event/336335/contributions/789041/
  195. 195.
    C. Marrelli, I. Syratchev, A. Yu, , IEEE Trans. Electron Devices 62, 3406 (2015)ADSCrossRefGoogle Scholar
  196. 196.
    I.A. Guzilov, BAC method of increasing the efficiency in Klystrons, in IEEE Vacuum Electron Sources Conference 2014, St. Petersburg, Russia (2014)Google Scholar
  197. 197.
    G. Burt, et al. Particle-in-cell simulation of a core stabilization method klystron, in IEEE International Vacuum Electronics Conference, IVEC 2017, London UK (2017)Google Scholar
  198. 198.
    I. Syratchev, High efficiency klystron technology, in Third Annual Meeting of the Future Circular Collider Study, Berlin, Germany 2017, (CERN, 2017), https://indico.cern.ch/event/556692/timetable/#20170530.detailed
  199. 199.
    J. Cai, I. Syratchev, KlyC: Large Signal Simulation Code for Klystrons, submitted to IEEE TED, January 2016 (2017)Google Scholar
  200. 200.
    A. Grudiev, K. Li, K. Papke, M. Schenk, RF Quadrupole System for FCC-hh, Technical Report cern-ats-2018-xxx (CERN, 2018)Google Scholar
  201. 201.
    A. Grudiev, K. Papke, Phys. Rev. Accel. Beams 20, 082001 (2017)ADSCrossRefGoogle Scholar
  202. 202.
    P. Baudrenghien and T. Mastoridis, Phys. Rev. Accel. Beams 20, 011004 (2017)ADSCrossRefGoogle Scholar
  203. 203.
    P. Baudrenghien, R. Calaga, E. Shaposhnikova, H. Timko, The Main RF System and its Implications for HL-LHC (7th HL-LHC Collaboration Meeting, CIEMAT, Madrid, Spain, 2017), https://indico.cern.ch/event/647714/contributions/2646158/attachments/1556707/2453084/HL-LHC_2017_Timko.pdf
  204. 204.
    M.J. Barnes et al., Inductive adders for replacing thyratron based modulators at CERN, in Power Electronics and Applications (EPE’15 ECCE-Europe), 2015 17th European Conference, 8–10 (September, 2015)Google Scholar
  205. 205.
    J. Holma, A pulse power modulator with extremely flat-top output pulses for the compact linear collider at CERN, Doctoral thesis, Doctoral Dissertations 196/2015, Helsinki, Finland, Aalto University publication series, 2015, CERN-THESIS-2014-359Google Scholar
  206. 206.
    D. Woog, M.J. Barnes, L. Ducimetiére, J. Holma, T. Kramer, J. Phys.: Conf. Ser. 874, 012096 (2017)Google Scholar
  207. 207.
    M.J. Barnes, J. Holma, Measurements on a 12.5 kV prototype inductive adder for the CLIC DR extraction kickers, in Proceedings of the 8th IPAC’17 (Copenhagen, Denmark, May 14–19, 2017), pp. 3487–3490, WEPVA098Google Scholar
  208. 208.
    M.J. Barnes, A. Kandratsyeu, L.M. Redondo, Marx generator prototype for kicker magnets based on SiC MOSFETs, Special Issue of Transactions on Plasma Science on Pulsed Power Science and Technology (2018), SubmittedGoogle Scholar
  209. 209.
    Y.H. Chin et al., Impedance and beam instability issues at J-PARC Rings, in Proceedings of the HB’08 (Nashville, Tennessee, USA, 2008), WGA01Google Scholar
  210. 210.
    M.J. Barnes, Preliminary estimate of beam induced power deposition in a FCC-hh injection kicker magnet, in Proceedings of the 8th IPAC’17 (Copenhagen, Denmark, May 14–19, 2017), pp. 3475–3478, WEPVA095Google Scholar
  211. 211.
    M.J. Barnes, A. Adraktas, G. Bregliozzi, B. Goddard, L. Ducimetière, B. Salvant, J. Sestak, L.V. Cid, W. Weterings, C.Y. Vallgren, J. Phys.: Conf. Ser. 874, 012101 (2017)Google Scholar
  212. 212.
    K. Sugita, IEEE Trans. Appl. Supercond. 22, 4902204 (June, 2012)CrossRefGoogle Scholar
  213. 213.
    D. Barna, Phys. Rev. Accel. Beams 20, 041002 (April, 2017)ADSCrossRefGoogle Scholar
  214. 214.
    E. Carlier, T. Fowler, N. Magnin, J. Rodziewicz, Prospects for an optical re-triggering system for the lhc beam dumping system at CERN, in Proceedings of the 2017 IEEE Pulsed Power ConferenceBrighton, UK, June 18–22, 2017), https://ieeexplore.ieee.org/document/8291250
  215. 215.
    D. Barna, First experimental results with the SuShi septum prototypes, in Future Circular Collider Week 2017, presentation (Berlin, Germany, May, 2017), https://indico.cern.ch/event/556692/contributions/2488390/attachments/1468982/2272308/barna-sushi.pdf
  216. 216.
    K. Sugita, Design status of a high field superconducting magnet, in Future Circular Collider Week 2017, presentation (Berlin, Germany, May, 2017), https://indico.cern.ch/event/556692/contributions/2488389/attachments/1466268/2271498/Sc-Septum-GSI.pdf
  217. 217.
    EUCARD2 Transnational Access Facility, Website, http://eucard2.web.cern.ch/content/transnational-access
  218. 218.
    I. Efthymiopoulos et al., HiRadMat: A New Irradiation Facility for Material Testing at CERN (November, 2011), http://cds.cern.ch/record/1403043, CERN-ATS-2011-232
  219. 219.
    F.X. Nuiry et al., Low-Z material R&D application for Beam Intercepting Devices (BID) at CERN, in 3rd International Workshop on Spallation Materials Technology (Chattanooga, TN, USA, 2016)Google Scholar
  220. 220.
    F. Carra et al., The “Multimat’’ experiment at CERN HiRadMat facility: advanced testing of novel materials and instrumentation for HL-LHC collimators, in Proceedings of the 8th IPAC’17 (Copenhagen, Denmark, 2017), pp. 76–097, MOPAB005Google Scholar
  221. 221.
    T.T. Böhlen et al., Nucl. Data Sheets 120, 211 (2014)ADSCrossRefGoogle Scholar
  222. 222.
    B. Goddard, Beam dumping system, in LHC Design Report, The LHC Main Ring, edited by O.S. Brüning, P. Collier, P. Lebrun, S. Myers, R. Ostojic, J. Poole, P. Proudlock (CERN, Geneva, Switzerland, 2004) Vol. 1, Chap. 17, CERN-2004-003Google Scholar
  223. 223.
    S. Péraire and P.R. Sala, Beam dumps and beam stoppers for LHC and CNGS transfer lines, LHC Project Report 465 (CERN, Geneva, Switzerland, 2001)Google Scholar
  224. 224.
    J. Kidd, N. Mokhov, T. Murphy, M. Palmer, T. Toohig, F. Turkot, A. VanGinneken, IEEE Trans. Nucl. Sci. 28, 2774 (1981)ADSCrossRefGoogle Scholar
  225. 225.
    C. Crawford, B. Hanna, Construction of a new Tevatron collider beam abort dump, in Conference Record of the 1991 IEEE Particle Accelerator Conference (San Sebastian, Spain, 1991), pp. 970–972Google Scholar
  226. 226.
    M. Schmitz, Overview of the beam abort system for the 820 GeV/c HERA proton ring, in Proceedings of the 3rd EPAC’92 (Berlin, Germany, 1992), pp. 1455–1456Google Scholar
  227. 227.
    T. Kramer et al., Considerations for the Injection and Extraction Kicker Systems of a 100 TeV Centre-of-Mass FCC-hh Collider in Proceedings of the 7th IPAC’16 (Busan, Korea, 2016), pp. 3901–3904THPOR049Google Scholar
  228. 228.
    N. Tahir et al., Hydrodynamic tunneling studies for a water beam dump in Future Circular Collider Week 2017, presentation (Berlin, Germany, May, 2017)Google Scholar
  229. 229.
    N. Mokhov, C.T. Murphy, S. Pruss, Extracted Beam Lines and Absorbers for a 50 × 50 TeV hadron collider, Fermilab Report FERMILAB-VLHCPUB-047 (CERN, Batavia, IL, USA, 1996)Google Scholar
  230. 230.
    O.R. Jones, First years experience of LHC Beam Instrumentation (September, 2011), https://cds.cern.ch/record/1382452
  231. 231.
    CERN EDMS Specification LHC-BPM-ES-0004, CERN EDMS document, https://edms.cern.ch/document/327557
  232. 232.
    M. Barros Marin, M. Barros Marin, A. Boccardi, C. Donat Godichal, J.L. Gonzalez, T. Lefevre, T. Levens, B. Szuk, J. Inst. 11, C02062 (2016)Google Scholar
  233. 233.
    M. Bergamaschi et al., Cherenkov Diffraction Radiation From Long Dielectric Material: An Intense Source of Photons in the NIR-THz Range (2017), https://cds.cern.ch/record/2289125, MOPAB118
  234. 234.
    B. Dehning, E. Effinger, J. Emery, G. Ferioli, G. Guaglio, E.B. Holzer, D. Kramer, L. Ponce, V. Prieto, M. Stockner, C. Zamantzas, The LHC beam loss measurement system, in 2007 IEEE Particle Accelerator Conference (PAC) (June, 2007), pp. 4192–4194, DOI: 10.1109/PAC.2007.4439980Google Scholar
  235. 235.
    M.F. Fernandes et al., Optimized cryogenic current comparator for CERN’s low-energy antiproton facilities, in Proceedings of the IBIC’16, Barcelona, Spain, September 13–18, 2016, no. 5 in International Beam Instrumentation Conference, (JACoW, Geneva, Switzerland, February, 2017), pp. 161–164, http://jacow.org/ibic2016/papers/mopg48.pdf
  236. 236.
    D. Belohrad, D.E. Pereira, J. Kral, S.B. Pedersen, Up1grade of the LHC bunch by bunch intensity measurement acquisition system, in Proceedings of the IBIC’16, Barcelona, Spain, Sept. 13–18, 2016, no. 5 in International Beam Instrumentation Conference (JACoW, Geneva, SwitzerlandFebruary, 2017), pp. 135–138, http://jacow.org/ibic2016/papers/mopg39.pdf
  237. 237.
    E. Bravin et al., Performance of the upgraded synchrotron radiation diagnostics at the LHC, in Proceedings of the IPAC’16, Busan, Korea, May 8–13, 2016, no. 7 in International Particle Accelerator Conference (JACoW, Geneva, Switzerland, June, 2016), pp. 306–309, http://jacow.org/ipac2016/papers/mopmr030.pdf
  238. 238.
    H.D. Zhang et al., A supersonic gas-jet based beam induced fluorescence prototype monitor for transverse profile determination, in Proceedings of the IPAC’17, Copenhagen, Denmark, no. 8 in International Particle Accelerator Conference (JACoW, Geneva, Switzerland, May 14–19, 2017), pp. 458–461, http://jacow.org/ipac2017/papers/mopab139.pdf
  239. 239.
    S. Vlachos et al., The LHC beam gas vertex detector – a non-invasive profile monitor for high energy machines, in Proceedings of the IBIC’17, Grand Rapids, Michigan, USA (August, 2017)Google Scholar
  240. 240.
    Review on the needs for a hollow e-lens for the HL-LHC, CERN (October 6–7, 2016), https://indico.cern.ch/event/567839/
  241. 241.
    O.S. Brüning, F. Willeke, Phys. Rev. Lett. 76, 3719 (1996)ADSCrossRefGoogle Scholar
  242. 242.
    R. Bruce et al., MD 1691: Active Halo Control Using Tune Ripple at Injection (April, 2017), http://cds.cern.ch/record/2261236, CERN-ACC-NOTE-2017-0031
  243. 243.
    G. Annala et al., Experimental study of magnetically confined hollow electron beams in the Tevatron as collimators for intense high-energy hadron beams, in Conference Proceedings (2011), pp. 370–372, Vol. C110328, Preprint PAC-2011-MOP147 FERMILAB-CONF-11-058-AD-APCGoogle Scholar
  244. 244.
    G. Apollinari et al., High-Luminosity Large Hadron Collider (HL-LHC). Technical Design Report V.0.1, Vol. 4 of CERN Yellow Reports: Monographs (CERN, Geneva, Switzerland, 2017), CERN-2017-007-MGoogle Scholar
  245. 245.
    Y. Nie, R. Schmidt, V. Chetvertkova, G. Rosell-Tarragó, F. Burkart, D. Wollmann, Phys. Rev. Accel. Beams 20, 081001 (August, 2017)ADSCrossRefGoogle Scholar
  246. 246.
    Q. Bai, B. Jin, D. Wang, Y. Wang, X. Liu, J. Inst. 13, T04004 (2018)ADSGoogle Scholar
  247. 247.
    T. Wilksen et al., The control system for the linear accelerator at the European XFEL: status and first experiences, in Proceedings of the 16th ICALEPCS’17, Barcelona, Spain, October 8–13, 2017 (2018), p. MOAPL01, http://inspirehep.net/record/1656098/files/moapl01.pdf
  248. 248.
    R. Ganter et al., SwissFEL Conceptual Design Report, PSI Bericht 10–14 (Paul Scherrer Institut, July, 2010), https://www.psi.ch/swissfel/SwissFELCDREN/SwissFEL_CDR_web_small.pdf
  249. 249.
    R. Huhmann et al., The FAIR control system – system architecture and first implementations, in Proceedings of the ICALEPCS’13, San Francisco, CA, USA (2013), p. MOPPC097, http://jacow.org/ICALEPCS2013/papers/moppc097.pdf
  250. 250.
    M. Hankel, B. Rexroth, The Reference Architectural Model Industrie 4.0 (RAMI 4.0) Whitepaper Version 1.0, ZVEI: Die Elektroindustrie (April, 2015), https://www.zvei.org/fileadmin/user_upload/Themen/Industrie_4.0/Das_Referenzarchitekturmodell_RAMI_4.0_und_die_Industrie_4.0-Komponente/pdf/ZVEI-Industrie-40-RAMI-40-English.pdf
  251. 251.
    E.P. Boven, White rabbit in radio astronomy, in Proceedings of the ICALEPCS’17, Barcelona, Spain (2017), p. TUCPL03, http://jacow.org/icalepcs2017/
  252. 252.
    N. Moreira, J. Lázaro, U. Bidarte, J. Jimenez, A. Astarloa, IEEE Trans. Smart Grid 8, 1932 (2017)CrossRefGoogle Scholar
  253. 253.
    R. Excel, G. Gaderer, P. Loschmidt, Comput. Netw. Commun. 2012, 1 (2012)Google Scholar
  254. 254.
    As-2d2 Deterministic Ethernet And Unified Networking, Time-Triggered Ethernet Standard AS 6802 (SAE International, September 11, 2016)Google Scholar
  255. 255.
    J. Allnut et al., Timing challenges in the smart grid, in Natl. Inst. Stand. Technol. Spec. Publ. 1500-08, (U.S. Department of Commerce, January, 2017), DOI: 10.6028/NIST.SP.1500-08Google Scholar
  256. 256.
    C. Sydlo et al., Femtosecond timing distribution at the European XFEL, in Proceedings of the FEL’15, Daejeon, Korea (2015), p. WEP047, http://jacow.org/FEL2015/papers/wep047.pdf
  257. 257.
    A. Aghababyan et al., The large scale European XFEL control system: overview and status of the commissioning, in Proceedings of the ICALEPCS’15, Melbourne, Australia (2015), pp. 5–8, http://jacow.org/icalepcs2015/papers/moa3o02.pdf
  258. 258.
    A. Dinius, Q. King, B. Todd, S. Uznanski, J. Inst. 7, C11012 (2012)Google Scholar
  259. 259.
    F. Abdi et al., Application and system-level software fault tolerance through full system restarts, in ACM/IEEE 8th International Conference on Cyber-Physical Systems (ICCPS), Pittsburgh, PA, USA (April 18–21, 2017), pp. 6505–6519, https://ieeexplore.ieee.org/document/7945009/
  260. 260.
    W. Benjamin et al., An open architecture for embedded systems: hardware open systems technologies, in IEEE SoutheastCon, Charlotte, NC, USA, (March 30–April 2, 2017), pp. 6505–6519, DOI: 10.1109/SECON.2017.7925388Google Scholar
  261. 261.
    P. Bieth, V. Brindejonc, COTS-AEH – Use of complex COTS in airborne electronic hardware – failure mode and mitigation, Research Project EASA.2012.C15 Report EASA.2012/04 (European Aviation Safety Agency, 2013), https://www.easa.europa.eu/sites/default/files/dfu/Final20Report20EASA202012-04.pdf
  262. 262.
    National Instruments, Considerations When Navigating Build or Buy Decisions for Industrial Embedded Control Projects White Paper 54072 (National Instruments, August 30, 2017), http://www.ni.com/white-paper/54072/en/
  263. 263.
    L. Yubin, L. Yucheng, High continuous availability digital information system based on stratus Fault-Tolerant server, in 2010 International Forum on Information Technology and Applications (July, 2010), Vol. 2, pp. 184–187, DOI: 10.1109/IFITA.2010.79Google Scholar
  264. 264.
    B. Chen, J. Wan, L. Shu, P. Li, M. Mukherjee, B. Yin, IEEE Access 6, 6505 (2017)CrossRefGoogle Scholar
  265. 265.
    I. Dai, P. Oleniuk, B. Todd, A. Voto, J. Inst. 11, C01047 (2016)Google Scholar
  266. 266.
    IEEE, Systems and Software Engineering – System Lifecycle Processes Standard ISO 15288:2008 (IEEE/ISO/IEC, 2008), https://en.wikipedia.org/wiki/ISO/IEC_15288
  267. 267.
    K. Forsberg, H. Mooz, System engineering for faster, cheaper, better, in INCOSE International Symposium Systems Engineering Past, Present and Future I, Brighton, England, (June 6–11, 1999), Vol. 9, pp. 924–932Google Scholar
  268. 268.
    European Commission, Horizon 2020 Work Programme 2016 – 2017. 5.i. Information and Communication Technologies European Commission Decision C(2017)2468 (European Commission, April 24, 2017), http://ec.europa.eu/research/participants/data/ref/h2020/wp/2016_2017/main/h2020-wp1617-leit-ict_en.pdf
  269. 269.
    J. Gutleber et al., The MedAustron accelerator control system, in Proceedings of the ICALEPCS’11, Grenoble, France (October 10–14, 2011), pp. 9–12, https://jacow.org/icalepcs2011/papers/mobaust03.pdf
  270. 270.
    J. Gutleber, R. Moser, The MedAustron accelerator control system: design installation and commissioning, in 14th International Conference on Accelerator and Large Experimental Physics Control Systems, San Francisco, CA, USA (March 6–11, 2013), p. TUCOAAB04, https://cds.cern.ch/record/1697002
  271. 271.
    Cosylab, Accelerator Control System for PT, Website, (2018), https://www.cosylab.com/accelerator-control-system-for-pt/
  272. 272.
    D. Ondreka, U. Weinrich, The Heidelberg Ion Therapy (HIT) accelerator coming into operation, in European Physical Society Accelerator Group, Proceedings of EPAC 2008, Genoa, Italy (June 23–27, 2008), pp. 979–981, https://jacow.org/e08/papers/tuocg01.pdf
  273. 273.
    S. Rossi, S. Eur, Phys. J. Plus 126, 78 (2011)CrossRefGoogle Scholar
  274. 274.
    S. Giordanengo, M.A. Garella, F. Marchetto, F. Bourhaleb, M. Ciocca, A. Mirandola, V. Monaco, M.A. Hosseini, C. Peroni, R. Sacchi, R. Cirio, M. Donetti, Med. Phys. 42, 263 (2016)CrossRefGoogle Scholar
  275. 275.
    P. Bryant, L. Evans (eds.), J. Inst. 3, 98 (2008)Google Scholar
  276. 276.
    B. Kihei, Automotive doppler sensing: the doppler profile with machine learning in vehicle-to-vehicle networks for road safety, in 18th IEEE International Workshop on Signal Processing Advances in Wireless Communications, Sapporo, Japan (July 3–6, 2017)Google Scholar
  277. 277.
    ICFA, Beam Dynamics Mini-Workshop: Machine Learning Applications for Particle Accelerators. SLAC National Accelerator Laboratory, Menlo Park, CA, USA., Indico presentation (27 February–2 March,2018), https://indico.fnal.gov/event/16327/other-view?view=standard
  278. 278.
    R.G. Alia et al., Single event effects in high energy accelerators, in Semiconductor Science and Technology (2017), http://iopscience.iop.org/10.1088/1361-6641/aa5695
  279. 279.
    R.G. Alia et al., IEEE Trans. Nucl. Sci. 65, 448 (January, 2018)ADSCrossRefGoogle Scholar
  280. 280.
    A. Apollonio et al., Roadmap towards high accelerator availability for the CERN HL-LHC Era, in Proceedings of the IPAC’15 (May 3–8, 2015)Google Scholar
  281. 281.
    J. Mekki et al., IEEE Trans. Nucl. Sci. 63, 2106 (August, 2016)ADSCrossRefGoogle Scholar
  282. 282.
    R. Lauckner, R. Rausch, P. Ribeiro, T. WijnandsIEEE Conf. Real-Time Comput. Appl. Nucl. Particle Plasma Phys. (1999) 194Google Scholar
  283. 283.
    M. Brugger et al., Irradiation Facilities at CERN (October, 2017), https://cds.cern.ch/record/2290629, AIDA-2020-CONF-2017-007
  284. 284.
    P. Carbonez, R. Macián-Juan, F. Pozzi, CERN Radiation Protection (RP) Calibration Facilities (July 1st, 2016), https://cds.cern.ch/record/2256137, CERN-THESIS-2015-394
  285. 285.
    M.R. Jäkel et al., CERN GIF++: a new irradiation facility to test large-area particle detectors for the high-luminosity LHC program, in PoS (TIPP2014), 102, Proceedings of the TIPP’14, Amsterdam, The Netherlands (2014), https://pos.sissa.it/213/102/pdf
  286. 286.
    M. Brugger et al., IEEE Trans. Nucl. Sci PP, 1 (2018), DOI: 10.1109/TNS.2018.2806450Google Scholar
  287. 287.
    M.L. Alles et al., IEEE Trans. Nucl. Sci. 64, 285 (2017).ADSCrossRefGoogle Scholar
  288. 288.
    D. Bouvet et al., IEEE Trans. Nucl. Sci. 65, 1583 (January, 2018)ADSCrossRefGoogle Scholar
  289. 289.
    Geoconsult and Gibb and SGI Ingeniere, LHC Civil Engineering Consultancy Services, Package 2 – Geotechnical Interpretative Report, CERNGoogle Scholar
  290. 290.
    P. Lebrun, L. Tavian, Phys. Procedia 67, 768 (October, 2014)ADSCrossRefGoogle Scholar
  291. 291.
    C. Kotnig, L. Tavian, I.O.P. Conf, Ser. Mater. Sci. Eng. 101, 012043 (2015)Google Scholar
  292. 292.
    M. Chorowski et al., IOP Conf. Ser: Mater. Sci. Eng. 278, 012097 (2017)CrossRefGoogle Scholar
  293. 293.
    G. Brenn, C. Kotnig, and L. Tavian, IOP Conf. Ser. Mater. Sci. Eng. 171, 012006 (2017)CrossRefGoogle Scholar
  294. 294.
    M.P. Chorowski, P. Duda, J. Polinski, Phys. Rev. Accel. Beams 30, 033202 (March, 2017)Google Scholar
  295. 295.
    C. Haberstroh, F. Holdener, S. Kloeppel, H. Quack, IOP Conf. Ser. Mater. Sci. Eng. 101, 012042 (2015)CrossRefGoogle Scholar
  296. 296.
    H.C. Rodrigues, L. Tavian, IOP Conf. Ser. Mater. Sci. Eng. 278, 012090 (2017)CrossRefGoogle Scholar
  297. 297.
    S. Claudet, G. Ferlin, F. Millet, L. Tavian, 1.8 K Refrigeration Units for the LHC: Performance Assessment of Pre-series Units (September, 2004), https://cds.cern.ch/record/795007, CERN-LHC-Project-Report-797
  298. 298.
    D. Boutin et al., Updates on the optic corrections of FCC-hh in Proceedings of the IPAC’18, Vancouver, Canada (2018), pp. 133–136, DOI: 10.18429/JACoW-IPAC2018-MOPMF023Google Scholar
  299. 299.
    P. Brockill et al., A novel multichannel interferometer system for absolute distance measurements, in Large Volume Metrology Conference (2012)Google Scholar
  300. 300.
    R. Bingham et al., The linear collider alignment and survey (LiCAS) Project, in Proceedings of the 7th International Workshop on Accelerators Alignment, 2002, Spring8, Japan (2002)Google Scholar
  301. 301.
    D. Clark, IEEE Comput. Sci. Eng. 5, 84 (1998)CrossRefGoogle Scholar
  302. 302.
    I. Bird, L. Robertson, J. Shiers, Deploying the LHC computing grid - the LCG service challenges, in 2005 IEEE International Symposium on Mass Storage Systems and Technology (June, 2005), pp. 160–165Google Scholar
  303. 303.
    J.C. Webber, The ALMA telescope, in 2013 IEEE MTT-S International Microwave Symposium Digest (MTT) (June, 2013), pp. 1–3Google Scholar
  304. 304.
    D. Ding, D. Wu, F. Yu, An overview on cloud computing platform spark for Human Genome mining, in 2016 IEEE International Conference on Mechatronics and Automation (August, 2016), pp. 2605–2610Google Scholar
  305. 305.
    G. Antchev et al., IEEE Trans. Nucl. Sci. 47 293.Google Scholar
  306. 306.
    K. Anikeev et al., Comput. Phys. Commun. 140, 110 (2001)ADSCrossRefGoogle Scholar
  307. 307.
    DESY, MicroTCA Technology Lab, Website (2018), https://techlab.desy.de
  308. 308.
    CERN, openlab, Website (2018), https://openlab.cern
  309. 309.
    Conseil régional Auvergne-Rhône-Alpes, Numérique, Feuille de route stratégique de la Région Auvergne-Rhône-Alpes 2017-2021, Website of the ARA region (2018), https://www.auvergnerhonealpes.fr/95-infrastructures-economie-usages-numeriques.htm
  310. 310.
    Grand Genève Agglomération Franco-Valdo-Genevoise, Charte d’engagement du projet de territoire Grand Genève 2016-2030, Website, December (2016), http://www.grand-geneve.org/sites/default/files/fichiers/projet-agglomeration3/charte_2016-projet-territoire.pdf
  311. 311.
    Sepura, Case Study: Advancing Safety and Communications at CERN, Website (January, 2014), https://www.sepura.com/media/166841/cern-case-study.pdf
  312. 312.
    Euro-IX, Information on Carrier Neutrality, Website (2018), https://www.euro-ix.net/en/forixps/set-ixp/ixp-models/neutrality
  313. 313.
    CERN, Documents and Maps of the Worldwide LHC Computing Grid (WLCG), Website (2018) http://wlcg.web.cern.ch/documents-reference
  314. 314.
    H. Schopper, Rivista del Nuovo Cimento 40, 199 (2017)ADSGoogle Scholar
  315. 315.
    B. Panzer-Steindel, IT Technology and Markets, Status and Evolution, Indico presentation (March 26, 2018), https://indico.cern.ch/event/658060/contributions/2889027/attachments/1622791/2583013/tech_market_BPS_Mar2018_v9pptx.pdf
  316. 316.
    A.D. Meglio, M. Girone, A. Purcell, F. Rademakers, CERN openlab white paper on future ICT challenges in scientific research (January, 2018)http://cds.cern.ch/record/2301895
  317. 317.
    A. Bastianin, M. Florio, Social Cost Benefit Analysis of HL-LHC, CERN-ACC-2018-0014 (CERN, Geneva, Switzerland, May, 2018), Preprint CERN-ACC-2018-0014, https://cds.cern.ch/record/2319300
  318. 318.
    S. Schmeling, IEEE Trans. Nucl. Sci. 53, 970 (2006)ADSCrossRefGoogle Scholar
  319. 319.
    D. Collaboration, Data Preservation in High Energy Physics (DPHEP), Website (2018), https://hep-project-dphep-portal.web.cern.ch
  320. 320.
    F. Berghaus et al., CERN Services for Long Term Data Preservation (CERN, Geneva, Switzerland, July, 2016), Preprint CERN-IT-Note-2016-004, https://cds.cern.ch/record/2195937
  321. 321.
    M.J. Barnes, T. Fowler, A. Kandratsyeu, L.M. Redondo, Design strategies for a SiC Marx generator for a kicker magnet, in 2017 IEEE 21st International Conference on Pulsed Power (PPC) (June, 2017). pp. 1–4Google Scholar
  322. 322.
    R. Cappi, M. Giovannozzi, Phys. Rev. ST Accel. Beams 7, 024001 (February, 2004)ADSCrossRefGoogle Scholar
  323. 323.
    E. Shaposhnikova, Implications of 5 ns bunch spacing for the injector chain, in Future Circular Collider Week 2017, presentation (Berlin, Germany, May, 2017), https://indico.cern.ch/event/556692/contributions/2567943/attachments/1468210/2271031/spacing5nsFCC_final.pdf
  324. 324.
    M. Benedikt, Design Optimization of PS2 (May, 2009), http://cds.cern.ch/record/1215876, CERN-sLHC-PROJECT-Report-0024
  325. 325.
    W. Bartmann et al., Possible reuse of the LHC as a 3.3 TeV high energy booster for Hadron injection into the FCC-hh, in Proceedings of the 6th IPAC’15, Richmond, Virginia, USA (May 3–8, 2015), p. THPF094, http://jacow.org/IPAC2015/papers/thpf094.pdf
  326. 326.
    W. Bartmann, et al., High Energy Booster Options for a Future Circular Collider at CERN (2016) http://cds.cern.ch/record/2207334, CERN-ACC-2016-291
  327. 327.
    B. Goddard, A. Milanese, M. Solfaroli Camillocci, Faster Ramp of LHC for use as an FCC High Energy Hadron Booster, CERN-ACC-2015-0133 (CERN, Geneva, Switzerland, October, 2015), Preprint CERN-ACC-2015-0133, http://cds.cern.ch/record/2057723
  328. 328.
    B. Goddard, A. Milanese, M. Solfaroli Camillocci, ICFA Beam Dyn. Newsl. 72, 113 (2017)Google Scholar
  329. 329.
    A. Milanese, M.S. Camillocci, Faster ramping of LHC in 2017 and prospects for lower energy injection into LHC in 2018, in Presented at FCC Week 2018, Amsterdam (April, 2018), https://indico.cern.ch/event/656491/contributions/2930783/attachments/1628670/2594859/FCC_week_2018_faster_ramping_LHC.pdf
  330. 330.
    O. Beltramello, Shutdown constraints and radiation and activation effects, in ECFA High Luminosity LHC Experiments Workshop, Aix-les-Bains (2014) (Aix-les-Bains, 2014), https://indico.cern.ch/event/315626/
  331. 331.
    B. Goddard et al., CERN Yellow Rep.: Monographs, 693, 3 (2017)Google Scholar
  332. 332.
    W. Bartmann et al., Conceptual design considerations for a 1.3 TeV superconducting SPS (scSPS), in Proceedings of the 8th IPAC’17, Copenhagen, Denmark (May 14–19, 2017), pp. 3323–3326, http://jacow.org/ipac2017/papers/wepva033.pdf
  333. 333.
    M. Benedikt, Summary of review of FCC-hh injection energy, Presented at FCC Week 2016 Rome (Rome, 2016), https://indico.cern.ch/event/438866/contributions/1084974/attachments/1256301/1854686/FCC_Week_Rome_Injection-Energy-review-summary.pdf
  334. 334.
    A.D. Kovalenko, W. Scandale, A.M. Taratin, Nucl. Inst. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 355, 390 (2015)ADSCrossRefGoogle Scholar
  335. 335.
    A. Milanese, H. Piekarz, L. Rossi, Concept of a Hybrid (Normal and Superconducting) Bending Magnet based on Iron Magnetization for 80-100km Lepton/Hadron Colliders (November, 2014), http://cds.cern.ch/record/1968562, CERN-ACC-2014-0274
  336. 336.
    The ALICE Collaboration, JINST 3, S08002 (2008)Google Scholar
  337. 337.
    The ATLAS Collaboration, JINST 3, S08003 (2008)Google Scholar
  338. 338.
    The CMS Collaboration, JINST 3, S08004 (2008)Google Scholar
  339. 339.
    The LHCb Collaboration, JINST 3, S08005 (2008)Google Scholar
  340. 340.
    H. Brooks, P.Z. Skands, P. Eur. Phys. J. C 78, 963 (2018)ADSCrossRefGoogle Scholar
  341. 341.
    J. Alwall et al., JHEP 07, 079 (2014)ADSCrossRefGoogle Scholar
  342. 342.
    ATLAS Collaboration, ATLAS Phase-II Upgrade Scoping Document CERN-LHCC-2015-020, LHCC-G-166 (CERN, Geneva, Switzerland, September, 2015), https://cds.cern.ch/record/2055248
  343. 343.
    CMS Collaboration, J. Butler et al., CMS Phase II Upgrade Scope Document, CERN-LHCC-2015-019. LHCC-G-165 (CERN, Geneva, Switzerland, September, 2015), https://cds.cern.ch/record/2055167, CERN-LHCC-2015-019
  344. 344.
    ATLAS Collaboration, Technical Design Report for the ATLAS inner tracker pixel detector, CERN-LHCC-2017-021, ATLAS-TDR-030 (CERN, Geneva, Switzerland, September, 2017), https://cds.cern.ch/record/2285585
  345. 345.
    ATLAS Collaboration, Technical Design Report for the ATLAS Inner Tracker Strip Detector CERN-LHCC-2017-005, ATLAS-TDR-025 (CERN, Geneva, Switzerland, April, 2017), https://cds.cern.ch/record/2257755
  346. 346.
    CMS Collaboration, The Phase-2 Upgrade of the CMS Tracker CERN-LHCC-2017-009, CMS-TDR-014 (CERN, Geneva, Switzerland, June, 2017), https://cds.cern.ch/record/2272264
  347. 347.
    M. Mentink et al., IEEE Trans. Appl. Supercond. 26, 4003506 (2016)Google Scholar
  348. 348.
    M. Morpurgo, Cryogenics 19, 411 (1979)ADSCrossRefGoogle Scholar
  349. 349.
    R.L. Gluckstern, Nucl. Instrum. Meth. 24, 381 (1963)ADSCrossRefGoogle Scholar
  350. 350.
    Z. Drasal, W. Riegler, Nucl. Instrum. Meth. A 910, 127 (2018)ADSCrossRefGoogle Scholar
  351. 351.
    E. Pere Codina, P. Roloff, Tracking and flavour tagging at FCC-hh LCD-Note-2018-002 (CERN, Geneva, Switzerland. August, 2018), http://cds.cern.ch/record/2635893
  352. 352.
    E. Pere Codina, P. Roloff, Initial Study of the Reconstruction of Boosted B-hadrons and τ-leptons at FCC-hh, LCD-Note-2018-003 (CERN, Geneva, Switzerland, October, 2018), http://cds.cern.ch/record/2643897
  353. 353.
    E. Perez Codina, P. Roloff, Hit Multiplicity Approach to b-tagging in FCC-hh, LCD-Note-2018-001 (CERN, Geneva, Switzerland, July, 2018), http://cds.cern.ch/record/2631478
  354. 354.
    ATLAS Collaboration, Technical Design Report for the Phase-II Upgrade of the ATLAS LAr calorimeter, CERN-LHCC-2017-018, ATLAS-TDR-027 (CERN, Geneva, Switzerland, September, 2017), https://cds.cern.ch/record/2285582
  355. 355.
    CMS Collaboration, The Phase-2 Upgrade of the CMS Endcap Calorimeter, CERN-LHCC-2017-023, CMS-TDR-019 (CERN, Geneva, Switzerland, November, 2017), https://cds.cern.ch/record/2293646, Technical Design Report of the endcap calorimeter for the Phase-2 upgrade of the CMS experiment, in view of the HL-LHC run
  356. 356.
    T. Carli, C. Helsens, A. Henriques Correia, C. Solan Sànchez, JINST 11, P09012 (2016)ADSCrossRefGoogle Scholar
  357. 357.
    ATLAS Collaboration, Z. Ajaltouni et al., Nucl. Instrum. Meth. A387, 333 (1997)ADSGoogle Scholar
  358. 358.
    G. Aad et al., Eur, Phys. J. C 77, 490 (2017)ADSGoogle Scholar
  359. 359.
    D. Bertolini, P. Harris, M. Low, N. Tran, JHEP 10, 059 (2014)ADSCrossRefGoogle Scholar
  360. 360.
    M. Cacciari, G.P. Salam, G. Soyez, J. High Energy Phys. 2008, 063 (2008)CrossRefGoogle Scholar
  361. 361.
    M.L. Mangano et al., JHEP 07, 001 (2003)ADSCrossRefGoogle Scholar
  362. 362.
    J.M. Campbell , K. Hatakeyama , J. Huston , F. Petriello , J. Andersen , L. Barze , H. Beauchemin , T. Becher , M. Begel , A. Blondel , G. Bodwin , R. Boughezal , S. Carrazza , M. Chiesa , G. Dissertori , S. Dittmaier , G. Ferrera , S. Forte , N. Glover , T. Hapola , A. Huss , X. Garcia i Tormo , M. Grazzini , S. Hoche , P. Janot , T. Kasprzik , M. Klein , U. Klein , D. Kosower , Y. Li , X. Liu , P. Mackenzie , D. Maitre , E. Meoni , K. Mishra , G. Montagna , M. Moretti , P. Nadolsky , O. Nicrosini , F. Piccinini , L. Reina , V. Radescu , J. Rojo , J. Russ , S. Sapeta , A. Schwartzman , P. Skands , J. Smillie , I.W. Stewart , F.J. Tackmann , F. Tramontano , R. Van de Water , J.R. Walsh , S. Zuberi , Report of the Snowmass 2013 energy frontier QCD working group, https://doi.org/arXiv:1310.5189 [hep-ph]
  363. 363.
    ATLAS Collaboration, Technical Design Report for the Phase-II Upgrade of the ATLAS TDAQ system, CERN-LHCC-2017-020, ATLAS-TDR-029, (CERN, Geneva, Switzerland, September, 2017), https://cds.cern.ch/record/2285584
  364. 364.
    CMS Collaboration, The Phase-2 Upgrade of the CMS DAQ Interim Technical Design Report, CERN-LHCC-2017-014, CMS-TDR-018 (CERN, Geneva, Switzerland, September, 2017), https://cds.cern.ch/record/2283193, this is the CMS Interim TDR devoted to the upgrade of the CMS DAQ in view of the HL-LHC running, as approved by the LHCC
  365. 365.
    W.J. Fawcett, A. Sfyrla, G. Iacobucci, A Self-Seeded Track Trigger for the FCC-hh, CERN-ACC-2018-0046 (CERN, Geneva, Switzerland, October, 2018), https://cds.cern.ch/record/2645273
  366. 366.
    S. Mrenna, T. Sjöstrand, P.Z. Skands, Comput. Phys. Commun. 178, 852 (2008)ADSCrossRefGoogle Scholar
  367. 367.
    B.C. Allanach, Comput. Phys. Commun. 143, 305 (2002)ADSCrossRefGoogle Scholar
  368. 368.
    A. Djouadi, M.M. Muhlleitner, M. Spira, Acta Phys. Polon. B38, 635 (2007)ADSGoogle Scholar
  369. 369.
    DELPHES 3 Collaboration, C. Delaere et al., JHEP 02, 057 (2014)ADSGoogle Scholar
  370. 370.
    J. Baglio et al., JHEP 04, 151 (2013)ADSCrossRefGoogle Scholar
  371. 371.
    R. Contino et al., CERN Yellow Rep. 255 (2017)Google Scholar
  372. 372.
    D. London, J.L. Rosner, Extra Gauge Bosons in E(6), in Proceedings of the 23rd ICHEP’86, Berkeley, CA, USA (July 16–23, 1986)Google Scholar
  373. 373.
    A. Joglekar, J.L. Rosner, Phys. Rev. D 96, 015026 (2017)ADSCrossRefGoogle Scholar
  374. 374.
    P. Langacker, Rev. Mod. Phys. 81, 1199 (2009)ADSCrossRefGoogle Scholar
  375. 375.
    E. Salvioni, G. Villadoro, F. Zwirner, JHEP 11, 068 (2009)ADSCrossRefGoogle Scholar
  376. 376.
    M. Ibe, S. Matsumoto, R. Sato, Phys. Lett. B 721, 252 (2013)ADSCrossRefGoogle Scholar
  377. 377.
    S.D. Thomas, J.D. Wells, Phys. Rev. Lett. 81, 34 (1998)ADSCrossRefGoogle Scholar
  378. 378.
    B.C. Allanach et al., JHEP 03, 045 (2003)Google Scholar
  379. 379.
    C.H. Chen, M. Drees, J.F. Gunion, Phys. Rev. D 55, 330 (1997)ADSCrossRefGoogle Scholar
  380. 380.
    C.H. Chen, M. Drees, J.F. Gunion, Addendum/erratum for “searching for invisible and almost invisible particles at e+ e− colliders’’ [hep-ph/9512230] and “a nonstandard string/SUSY scenario and its phenomenological implications’’ [hep-ph/9607421], arXiv:hep-ph/9902309 [hep-ph], Preprint UCD-99-2Google Scholar
  381. 381.
    S. Asai, T. Moroi, T.T. Yanagida, Phys. Lett. B 664, 185 (2008)ADSCrossRefGoogle Scholar
  382. 382.
    J. Blumlein, M. Klein, Nucl. Instrum. Meth. A329, 112 (1993)ADSCrossRefGoogle Scholar
  383. 383.
    LHeC Collaboration, Electrons for the LHC, , Update of the LHeC Design, Geneva, CERN, in progress (2019)Google Scholar
  384. 384.
    Gouvernement de la République française and CERN, Accord entre le Gouvernement de la République française et l’Organisation Européenne pour la Recherche Nucléaire relatif au statut juridique de ladite Organisation en France, CERN institutional documents (CERN, Geneva, Switzerland, August, 1973) https://cds.cern.ch/record/436804/files/CM-B00042459.pdf
  385. 385.
    U. Forsblom-Pärli et al., Connaissez-vous le potentiel des phénomènes dangereux dans votre entreprise? instruction, système selon commission fédérale de coordination pour la sécurité au travail, SUVA – Protection de la santé (June, 2011), Preprint 66105.1, https://www.suva.ch/materiel/documentation/connaissez-vous-le-potentiel-des-phenomenes-dangereux-dans-votre-entreprise-le-66105.f-25527-25526
  386. 386.
    S.L. Mendola, FCC performance-based safety design – A proposal for a methodology founded on the SFPE guideline internal presentation (CERN, June, 2017), Preprint EDMS 1770088, https://edms.cern.ch/document/1770088
  387. 387.
    International Electrotechnical Commission, IEC 60812:2018 – Failure modes and effects analysis (FMEA and FMECA), (International Standard. IEC, Geneva, Switzerland, 3.0 ed, August 10, 2018), https://cds.cern.ch/record/436804/files/CM-B00042459.pdf
  388. 388.
    O. Rios and A. Arnalich, Quantitative Assessment of Fire Hazard for FCC-hh (and FCC-ee) internal report (CERN, June, 2018), Preprint EDMS 1975602, https://edms.cern.ch/document/1975602
  389. 389.
    A. Henriques, Private communication (CERN, Geneva, Switzerland, April, 2018)Google Scholar
  390. 390.
    O.R. Rubiras, A. Arnalich, FCC-hh Fire Safety Analysis: Executive Summary EDMS 1982356 (CERN, Geneva, Switzerland, 2018), Preprint FCC-INF-RPT-0060 v.1, https://edms.cern.ch/document/1982356/
  391. 391.
    A. Henriques, FCC Performance-Based Design for Safety Aspects: Qualitative Analysis on Cryogenic Hazards internal report (CERN, December, 2017), Preprint EDMS 1818330, https://edms.cern.ch/document/1818330
  392. 392.
    STUVA e.V, Security and Workplace Safety Concepts for the Construction, Installation and Operation of the XFEL Research Facility European XFEL project documentation (European XFEL GmbH, August, 2005), Project internal, not publicGoogle Scholar
  393. 393.
    K. McGrattanet al., Fire Dynamics Simulator User’s Guide, special publication (National Institute of Standards and Technology, June, 2018), Preprint 1019, https://pages.nist.gov/fds-smv/; https://github.com/firemodels/fds/releases/download/FDS6.7.0/FDS_User_Guide.pdf
  394. 394.
    B. Delille et al.Task Force Report, Safety of Personnel in LHC Underground Areas Following the Accident of 19th September 2008 report, CERN, June 16, 2009, Preprint CERN-ATS-2009-002, https://cds.cern.ch/record/1184225
  395. 395.
    A.J. Henriques, FCC performance-based Design for Safety Aspects – Cryogenic hazards, EDMS 1818330 v.1.1 (CERN, Geneva, Switzerland, December, 2017), Preprint EDMS 1818330, https://edms.cern.ch/document/1818330/1.1
  396. 396.
    La République française, Article L1333-1 to L1333-25, Code de la santé publique (2018), https://www.legifrance.gouv.fr/telecharger_pdf.do?cidTexte=LEGITEXT000006072665
  397. 397.
    L’Assemblée fédérale de la Confédération suisse, Loi sur la radioprotection (LRaP), Recueil officiel du droit fédéral (RO) (2017), https://www.admin.ch/opc/fr/classified-compilation/19910045/index.html
  398. 398.
    R. Rata, M. Widorski, Radiological studies for the FCC-hh collimation regions, EDMS 1975526 (2018), https://edms.cern.ch/file/1976620/1/TN_FCChh_EXP.pdf
  399. 399.
    L. Bruno, M. Magistris, Radioactive Waste Management at CERN, Technical Note, EDMS 1453489 (2017), https://edms.cern.ch/document/1453489/3.1
  400. 400.
    Energy for Sustainable Science at Research Infrastructures, 4th Workshop in Măgurele, Bucharest, Romania (November 23–24, 2017)Google Scholar
  401. 401.
    EuCard2 (Enhanced European Coordination for Accelerator Research and Development), Website http://eucard2.web.cern.ch/
  402. 402.
    EuCard2 Work Package 3, Website https://www.psi.ch/enefficient/
  403. 403.
    ARIES (Accelerator Research and Innovation for European Science and Society), Website https://aries.web.cern.ch/
  404. 404.
    M. Seidel, Energy efficiency of accelerators in the European programs Eucard2 and ARIES, https://indico.eli-np.ro/event/1/contributions/6/attachments/70/106/4_enefficient_seidel.pdf
  405. 405.
    A. Grosjean, Tout un quartier chauffé grâce au CERN, Tribune de Genève (2018), https://www.tdg.ch/geneve/actu-genevoise/Tout-un-quartier-chauffe-grce-au-CERN/story/28974479
  406. 406.
    K. Biesheuvel, R. de Boer, S. Smeding, Waste Heat recovery in industrial batch processes: analysis of combines heat storage and heat pump application, in Proceedings of the 12th IEA Heat Pump Conference, no. 12 in HPC (IEA, Rotterdam, The Netherlands, June, 2017), http://hpc2017.org/wp-content/uploads/2017/05/O.3.8.1-Waste-Heat-recovery-in-industrial-batch-processes-analysis-of-combined-heat-storage.pdf
  407. 407.
    F. Campana et al., Energ. Convers. Manage. 76, 244 (2013)CrossRefGoogle Scholar
  408. 408.
    P. Colonna et al., J. Eng. Gas Turbines Power 137, 100801-1 (2015)CrossRefGoogle Scholar
  409. 409.
    Accord entre le Gouvernement de la République française et l’Organisation européenne pour la Recherche nucléaire relatif au statut juridique de ladite Organisation en France (CERN, Geneva, Switzerland, 1973), https://cds.cern.ch/record/436804
  410. 410.
    Convention entre le Conseil fédéral de la Confédération suisse et le Gouvernement de la République française relative à l’extension en territoire français du domaine de l’Organisation européenne pour la recherche nucléaire, Le Conseil fédéral, Chancellerie fédérale, Palais fédéral ouest (3003 Berne, Switzerland, September 13, 1965), https://www.admin.ch/opc/fr/classified-compilation/19650161
  411. 411.
    A. Poiron, M. Zahnd, FCC Layout Review in Switzerland deliverable report contract ca 3797383 (Ecotec, December, 2017), Preprint EDMS 1838912, https://edms.cern.ch/document/1838912
  412. 412.
    Le Conseil fédéral suisse, Ordonnance relative à l’étude de l’impact sur l’environnement 814.011 (UVPV), Recueil officiel du droit fédéral (RO) (2016), https://www.admin.ch/opc/fr/classified-compilation/19880226/index.html
  413. 413.
    Office fédéral de l’environnement OFEV, Directive de la Confédération sur l’étude de l’impact sur l’environnement (Manuel EIE), Serie L’environnement pratique (2009), https://www.bafu.admin.ch/bafu/fr/home/themes/eie/publications/manuel-eie.html
  414. 414.
    Le Président de la République, Code de l’environnement, Journal officiel de la République française (2018), https://www.legifrance.gouv.fr/affichCode.do?cidTexte=LEGITEXT000006074220dateTexte=20180924
  415. 415.
    UNECE, Convention on environmental impact assessment in a transboundary context Convention ECE/MP.EIA/21/Amend.1, United Nations, Avenue de la Paix 8, 1202 Genève, Suisse (October, 2017), http://www.unece.org/env/eia/about/eia_text.html
  416. 416.
    Office Fédéral de la santé publique, Radioactivité de l’environnement et doses de rayonnements en Suisse, Rapport 2017, Project website (2018), http://www.bag.admin.ch/ura-jb
  417. 417.
    R. Rata, M. Widorski, Radiological studies for the FCC-hh arc sections, EDMS 1905211 (2018), https://edms.cern.ch/file/1905211/1/TN_FCChh_ARC.pdf
  418. 418.
    R. Rata, M. Widorski, Radiological studies for the FCC-hh experimental caverns, EDMS 1976620 (2018)Google Scholar
  419. 419.
    A. Bibet-Chevalier, D. Chanal, Étude de sensibilité du scenario d’implantation du project FCC en France et de ses opportunités Rapport d’étude du Cerema FCC-INF-RPT-040 and EDMS 1853668 (CEREMA, April 26, 2018), https://edms.cern.ch/document/1853668
  420. 420.
    Le Conseil fédéral suisse, Ordonnance sur l’aménagement du territoire (OAT) 700.1, Recueil officiel du droit fédéral (RO) (2016), https://www.admin.ch/opc/fr/classified-compilation/national.html
  421. 421.
  422. 422.
    M. Magistris, H. Vincke, M. Widorski, Radioactive Waste Estimates for the FCC project EDMS 1992036 (CERN, Geneva, Switzerland, 2018), Preprint EDMS 1992036, https://cds.cern.ch/record/1992036
  423. 423.
    Départment du Rhône-Métropole de Lyon, Plan de prévention et de gestion des déchets non dangereux du Rhône et de la Métropole de Lyon (June, 2015), http://www.sindra.org/wp-content/uploads/2017/01/Plan-dC3A9chets-non-dangereux-RhC3B4ne-MC3A9tropole-de-Lyon.pdf
  424. 424.
    Le Président de la République, Loi n. 2015-992 du 17 août 2015 relative à la transition énergétique pour la croissance verte, Journal officiel de la République française (2018) 14263, https://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000031044385
  425. 425.
    République et Canton de Genève, Genève – Plan directeur cantonal 2030 permière mise à jour, Direction de la planification directrice cantonale et régionale, service du plan directeur cantonal (February, 2017), https://www.ge.ch/consulter-plans-amenagement-adoptes/plan-directeur-cantonal
  426. 426.
    P. Joxe, J. Officiel République Fr. 33, 2064 (2018)Google Scholar
  427. 427.
    Le Président de la République, J. Officiel République Fr. 75, 5568 (2003)Google Scholar
  428. 428.
    UNECE, Treaty Ser. 2161, 447 (1998)Google Scholar
  429. 429.
    CEREMA, Rapport d’études sur les impacts pour l’État en matière de procédures et d’engagements financiers report, Secrétariat Gégnéral pour les Affaires Régionales d’Auvergne-Rhône-Alpes (April, 2018), This report is for government-internal purposes only.Google Scholar
  430. 430.
    Le Président de la République, J. Officiel République Fr. (JORF) 248, 17545 (2002).Google Scholar
  431. 431.
    Le Président de la République, J. Officiel République Fr. (JORF) 0181, 10 (2016)Google Scholar
  432. 432.
    Commission nationale du débat public, Comment ça marche ? site internet de l’institution, Commission nationale du débat public, 244 boulevard Saint-Germain 75007 Paris France (October, 2002), https://www.debatpublic.fr/comment-ca-marche
  433. 433.
    Journal officiel de la République française (JORF), J. Officiel République Fr. 0261, 19003 (2014)Google Scholar
  434. 434.
    Le Président de la République, J. Officiel République Fr. (2018), https://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000033926976
  435. 435.
    Le Président de la République, J. Officiel République Fr. 0128, 10339 (2018)Google Scholar
  436. 436.
    Direction de l’ARE, Surfaces d’assolement selon le plan sectoriel SA Modèle de géodonnées minimal. Documentation sur le modèle. 68, Office fédéral du développement territorial ARE, Worblenstrasse 66, CH-3063 Ittingen, Schweiz (November, 2015)https://www.are.admin.ch/are/fr/home/developpement-et-amenagement-du-territoire/strategie-et-planification/conceptions-et-plans-sectoriels/plans-sectoriels-de-la-confederation/sda.html
  437. 437.
    Conseil d’Etat de la République et canton de Genève, Surfaces d’assolement selon le plan sectoriel SA Législation K 1 70.13, État de Genève, 2, rue Henri-Fazy, case postale 3964, 1211 Genève 3 (January, 2008), https://www.ge.ch/legislation/rsg/f/s/rsg_k1_70p13.html
  438. 438.
    G. Catalano et al., Guide to Cost-Benefit Analysis of Investment Projects (Regional and Urban Policy, European Union, December, 2014), pp. 321–333Google Scholar
  439. 439.
    Questionnaire for submission of proposals for roadmap 2018, Website (September, 2016), https://ec.europa.eu/research/infrastructures/pdf/esfri/esfri_roadmap/esfri_rd2018_questionnaire.pdf
  440. 440.
    RI impact pathways H2020 INFRASUPP project 777563, January 2018 to June 2020, Website (September, 2018), https://cordis.europa.eu/project/rcn/212964_en.html
  441. 441.
    M. Florio, E. Sirtori, Technol. Forecasting Soc. Change 112, 65 (2016)CrossRefGoogle Scholar
  442. 442.
    M. Florio, S. Forte, E. Sirtori, Techn. For. and Soc. Change 112, 38 (2016)CrossRefGoogle Scholar
  443. 443.
    M. Florio et al., Exploring Cost-Benefit Analysis of Research, Development and Innovation Infrastructures: An Evaluation Framework working paper 01/2016 (CSIL Centre for Industrial Studies, Corso Monforte, 15, 20122 Milano MI, Italy, March, 2016), https://doi.org/arXiv:1603.03654 [physics.soc-ph]
  444. 444.
    United Nations Statistical Commission, System of National Accounts 2008, Website (2008), https://unstats.un.org/unsd/nationalaccount/sna2008.asp
  445. 445.
    P. Johansson, B. Kriström, Cost-Benefit Analysis for Project Appraisal (Cambridge University Press, October, 2015), ISBN 9781107548220Google Scholar
  446. 446.
    P. Herson, L. McNeil, Phys. Today 70, 39 (2017)Google Scholar
  447. 447.
    T. Camporesi, G. Catalano, M. Florio, F. Giffoni, European Journal of Physics 38, 025703 (2017)ADSCrossRefGoogle Scholar
  448. 448.
    G. Catalano, M. Florio, V. Morretta, T. Portaluri, The Value of Human Capital Formation at CERN CERN-ACC-2018-0025 (CERN, Geneva, Switzerland, August 22, 2018), Preprint CERN-ACC-2018-0025, https://cds.cern.ch/record/2635864
  449. 449.
    Economisti Associati, Marie Curie Researchers and their Long-term Career Development: A Comparative Study, final report (European Union, Publications Office of the European Union, March, 2014), http://ec.europa.eu/research/fp7/pdf/mca/marie_curie_researchers_and_their_long-term_career_development.pdf
  450. 450.
    A. Bibet-Chevalier, D. Chanal, Étude des impacts pour l’État du projet de future collosionneur circulaire du CERN en matière de procédures et d’engagements financiers Rapport d’étude du Cerema pour le SGAR Auvergne-Rhône-Alpes EDMS 1959547 V1.0, CEREMA (March, 2018), https://edms.cern.ch/document/1959547/1.0, Access to the report is subject to an NDA
  451. 451.
    European Advances Superconductor Innovation and Training Network, Website http://easitrain.web.cern.ch
  452. 452.
    CEBR, The importance of physics to the economics of Europe executive summary report of the centre for economics and business research (European Physical Society, 68200 Mulhouse, France, January, 2013), http://www.eps.org/?page=policy_economy
  453. 453.
    M. Bianchi-Streit et al., Economic utility resulting from CERN contracts (second study), CERN Yellow Reports: Monographs (CERN, Geneva, Switzerland, 1984), https://cds.cern.ch/record/156911
  454. 454.
    P. Castelnovo et al., Res. Policy 47, 1853 (2018)CrossRefGoogle Scholar
  455. 455.
    M. Florio, F. Giffoni, A. Giunta, E. Sirtori, Ind. Corporate Change 27, 915 (2018)CrossRefGoogle Scholar
  456. 456.
    A. Bastianin, M. Florio, Industrial Spillovers from the LHC/HL-LHC Programme at CERN, CERN-ACC-2018-0026 (CERN, Geneva, Switzerland, August 23, 2018), Preprint CERN-ACC-2018-0026, https://cds.cern.ch/record/2635876
  457. 457.
    P. Seidel, Applied superconductivity: handbook on devices and applications, in The Art of Computer Programming (Wiley, February, 2015), p. 1238, ISBN 978-3-527-41209-9Google Scholar
  458. 458.
    P. Lebrun, Mater. Sci. Eng. 171, 012001 (2017)Google Scholar
  459. 459.
    E. Autio, M. Bianchi-Streit, A.P. Hameri, Technology Transfer and Technological Learning Through CERN’s Procurement Activity, CERN Yellow Reports: Monographs (CERN, Geneva, Switzerland, 2003), https://cds.cern.ch/record/680242
  460. 460.
  461. 461.
    C. Benna, Telt-Politecnico, master e dottorandi nel cantiere della Torino-Lione, Corriere della Sera (2017), http://torino.corriere.it/cronaca/17_dicembre_15/accordo-telt-politecnico-master-dottorandi-cantiere-torino-lione-ba0f2874-e1e7-11e7-980c-f1b8f0b331b7.shtml
  462. 462.
    Sept projets innovants pour les déblais du Grand Paris, Website (2017), https://www.usinenouvelle.com/article/sept-projets-innovants-pour-les-deblais-du-grand-paris.N520469
  463. 463.
    T.B. Lee, M. Fischetti, Weaving the web: the original design and ultimate destiny of the world wide web by its inventor, Harper Business, 1st edition (November, 2000), ISBN 978-0062515872Google Scholar
  464. 464.
    L. Mascetti et al., J. Phys.: Conf. Ser. 644, 062037 (2015)Google Scholar
  465. 465.
    A. Alberini, A. Longo, J. Cult. Econ. 30, 287 (2006)CrossRefGoogle Scholar
  466. 466.
    R.C. Bishop, N.W. Bouwes, P.P. Caulkins, Am. J. Agricult. Econ. 68, 291 (1986)CrossRefGoogle Scholar
  467. 467.
    J.P. Poor, J.M. Smith, J. Cult. Econ. 28, 217 (2004)CrossRefGoogle Scholar
  468. 468.
    M. Florio, S. Forte, E. Sirtori, Technol. Forecast. Soc. Change 112, 38 (2016)CrossRefGoogle Scholar
  469. 469.
  470. 470.
    G. Catalano, I.C. Garido, Cultural Effects at CERN CERN-ACC-2018-0048 (CERN, Geneva, Switzerland, November, 2018), https://cds.cern.ch/record/2649022
  471. 471.
    R.D. Cabana, J.E. Petro, Kennedy Space Center. Future Development Concept, KSC center master plan 2012–2031 (NASA, John F. Kennedy Space Center, FL 32899, USA, 2012), https://www.nasa.gov/centers/kennedy/pdf/634026main_future-concept.pdf
  472. 472.
    A.J. Barr, A. Haas, C. Kalderon, ‘That looks weird’ = evaluating citizen scientists’ ability to detect unusual features in ATLAS images of collisions at the Large Hadron Collider, report, (University of Oxford, UK and New York University, USA and University of Lund, Sweden, 2017), https://doi.org/arXiv:1610.02214 [physics.soc-ph], https://arxiv.org/pdf/1610.02214.pdf
  473. 473.
    The Zooniverse project: publications, Website https://www.zooniverse.org/about/publications
  474. 474.
    EXTREME – alla ricerca delle particelle, Museo Nazionale Scienza e Tecnologia Leonardo Da Vinci, Milano, Italia (2016), http://www.museoscienza.org/extreme
  475. 475.
    Anfang – Wie alles begann, Von Galaxien, Quarks und Kollisionen. Naturhistorisches Museum Wien, Austria (2016), http://www.nhm-wien.ac.at/anfang
  476. 476.
    F. Giffoni, F. Massimo, Scientific Research at CERN as a Public Good: A Survey to French citizens, CERN-ACC-2018-0024, (CERN, Geneva, Switzerland, August, 2018), Preprint CERN-ACC-2018-0024, https://cds.cern.ch/record/2635861
  477. 477.
  478. 478.
    A. Augier, B. Gindre, Préparation de l’accompagnement stratégie en concertation socio-territoriale dans le cadre de l’étude FCC Final project report EDMS 1745888, iddest – Institut durable de développement économique, social & territorial (January, 2017), Access to the report is subject to a NDAGoogle Scholar
  479. 479.
    M. Sauvain, Rapport d’étude relatif aux procédures administratives sur le territoire suisse, Rapport de la Structure de Concertation Permanente EDMS 20258995 V1.0, Latitude Durable (November, 2018), https://edms.cern.ch/document/2025895, Access to the report is subject to an NDA
  480. 480.
    European Strategy Forum on Research Infrastructures, Strategy Report on Research Infrstructures, Roadmap 2018 Roadmap 2018 (ESFRI, August, 2018), http://roadmap2018.esfri.eu/media/1066/esfri-roadmap-2018.pdf
  481. 481.
    European Strategy Forum on Research Infrastructures, Public Roadmap 2018 Guide Guide 2018 (ESFRI, December, 2016), https://ec.europa.eu/research/infrastructures/pdf/esfri/esfri_roadmap/esfri_rd2018_guide_for_appplicants.pdf
  482. 482.
    A. Ballarino, L. Bottura, IEEE Trans. Appl. Supercon. 25, 3 (2015)CrossRefGoogle Scholar
  483. 483.
    B. Bordini, The Nb3Sn wire procured by CERN for the High Luminosity upgrade of the Large Hadron Collider, in Proceedings of the ASC’18, IEEE Conference Proceedings (IEEE, Seattle, USA, October, 2018), forthcoming in 2019 on IEEE XPloreGoogle Scholar
  484. 484.
    CERN EP department, R&D on experimental technologiesProject website, https://ep-dep.web.cern.ch/rd-experimental-technologies
  485. 485.
    CERN EP department, First workshop on R&D on experimental technologies, Indico website, https://indico.cern.ch/event/696066/
  486. 486.
    CERN EP department, Second workshop on R&D on experimental technologies, Indico website, https://indico.cern.ch/event/743661/

Copyright information

© The Author(s) 2019

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • A. Abada
    • 33
  • M. Abbrescia
    • 118
    • 258
  • S. S. AbdusSalam
    • 219
  • I. Abdyukhanov
    • 17
  • J. Abelleira Fernandez
    • 143
  • A. Abramov
    • 205
  • M. Aburaia
    • 285
  • A. O. Acar
    • 239
  • P. R. Adzic
    • 288
  • P. Agrawal
    • 80
  • J. A. Aguilar-Saavedra
    • 47
  • J. J. Aguilera-Verdugo
    • 107
  • M. Aiba
    • 192
  • I. Aichinger
    • 65
  • G. Aielli
    • 135
    • 273
  • A. Akay
    • 239
  • A. Akhundov
    • 46
  • H. Aksakal
    • 146
  • J. L. Albacete
    • 47
  • S. Albergo
    • 121
    • 261
  • A. Alekou
    • 313
  • M. Aleksa
    • 65
  • R. Aleksan
    • 40
  • R. M. Alemany Fernandez
    • 65
  • Y. Alexahin
    • 71
  • R. G. Alía
    • 65
  • S. Alioli
    • 127
  • N. Alipour Tehrani
    • 65
  • B. C. Allanach
    • 299
  • P. P. Allport
    • 291
  • M. Altınlı
    • 63
    • 113
  • W. Altmannshofer
    • 298
  • G. Ambrosio
    • 71
  • D. Amorim
    • 65
  • O. Amstutz
    • 162
  • L. Anderlini
    • 124
    • 263
  • A. Andreazza
    • 128
    • 267
  • M. Andreini
    • 65
  • A. Andriatis
    • 168
  • C. Andris
    • 166
  • A. Andronic
    • 346
  • M. Angelucci
    • 116
  • F. Antinori
    • 130
    • 268
  • S. A. Antipov
    • 65
  • M. Antonelli
    • 116
  • M. Antonello
    • 128
    • 265
  • P. Antonioli
    • 119
  • S. Antusch
    • 287
  • F. Anulli
    • 134
    • 272
  • L. Apolinário
    • 159
  • G. Apollinari
    • 71
  • A. Apollonio
    • 65
  • D. Appelö
    • 302
  • R. B. Appleby
    • 303
    • 313
  • A. Apyan
    • 71
  • A. Apyan
    • 1
  • A. Arbey
    • 337
  • A. Arbuzov
    • 18
  • G. Arduini
    • 65
  • V. Arı
    • 10
  • S. Arias
    • 67
    • 311
  • N. Armesto
    • 109
  • R. Arnaldi
    • 137
    • 275
  • S. A. Arsenyev
    • 65
  • M. Arzeo
    • 65
  • S. Asai
    • 237
  • E. Aslanides
    • 32
  • R. W. Aßmann
    • 50
  • D. Astapovych
    • 229
  • M. Atanasov
    • 65
  • S. Atieh
    • 65
  • D. Attié
    • 40
  • B. Auchmann
    • 65
  • A. Audurier
    • 120
    • 260
  • S. Aull
    • 65
  • S. Aumon
    • 65
  • S. Aune
    • 40
  • F. Avino
    • 65
  • G. Avrillaud
    • 84
  • G. Aydın
    • 174
  • A. Azatov
    • 138
    • 215
  • G. Azuelos
    • 242
  • P. Azzi
    • 130
    • 268
  • O. Azzolini
    • 117
  • P. Azzurri
    • 133
    • 216
  • N. Bacchetta
    • 130
    • 268
  • E. Bacchiocchi
    • 267
  • H. Bachacou
    • 40
  • Y. W. Baek
    • 75
  • V. Baglin
    • 65
  • Y. Bai
    • 333
  • S. Baird
    • 65
  • M. J. Baker
    • 335
  • M. J. Baldwin
    • 168
  • A. H. Ball
    • 65
  • A. Ballarino
    • 65
  • S. Banerjee
    • 55
  • D. P. Barber
    • 50
    • 318
  • D. Barducci
    • 138
    • 215
  • P. Barjhoux
    • 3
  • D. Barna
    • 173
  • G. G. Barnaföldi
    • 173
  • M. J. Barnes
    • 65
  • A. Barr
    • 191
  • J. Barranco García
    • 57
  • J. Barreiro Guimarães da Costa
    • 98
  • W. Bartmann
    • 65
  • V. Baryshevsky
    • 96
  • E. Barzi
    • 71
  • S. A. Bass
    • 54
  • A. Bastianin
    • 267
  • B. Baudouy
    • 40
  • F. Bauer
    • 40
  • M. Bauer
    • 55
  • T. Baumgartner
    • 233
  • I. Bautista-Guzmán
    • 16
  • C. Bayındır
    • 20
    • 83
  • F. Beaudette
    • 33
  • F. Bedeschi
    • 133
    • 216
  • M. Béguin
    • 65
  • I. Bellafont
    • 7
  • L. Bellagamba
    • 119
    • 259
  • N. Bellegarde
    • 65
  • E. Belli
    • 134
    • 209
    • 272
  • E. Bellingeri
    • 44
  • F. Bellini
    • 65
  • G. Bellomo
    • 128
    • 267
  • S. Belomestnykh
    • 71
  • G. Bencivenni
    • 116
  • M. Benedikt
    • 65
    Email author
  • G. Bernardi
    • 33
  • J. Bernardi
    • 233
  • C. Bernet
    • 33
    • 337
  • J. M. Bernhardt
    • 3
  • C. Bernini
    • 44
  • C. Berriaud
    • 40
  • A. Bertarelli
    • 65
  • S. Bertolucci
    • 119
    • 259
  • M. I. Besana
    • 192
  • M. Besançon
    • 40
  • O. Beznosov
    • 318
  • P. Bhat
    • 71
  • C. Bhat
    • 71
  • M. E. Biagini
    • 116
  • J. -L. Biarrotte
    • 33
  • A. Bibet Chevalier
    • 28
  • E. R. Bielert
    • 306
  • M. Biglietti
    • 136
    • 274
  • G. M. Bilei
    • 132
    • 271
  • B. Bilki
    • 307
  • C. Biscari
    • 7
  • F. Bishara
    • 50
    • 191
  • O. R. Blanco-García
    • 116
  • F. R. Blánquez
    • 65
  • F. Blekman
    • 342
  • A. Blondel
    • 305
  • J. Blümlein
    • 50
  • T. Boccali
    • 133
    • 216
  • R. Boels
    • 85
  • S. A. Bogacz
    • 238
  • A. Bogomyagkov
    • 24
  • O. Boine-Frankenheim
    • 229
  • M. J. Boland
    • 323
  • S. Bologna
    • 292
  • O. Bolukbasi
    • 113
  • M. Bomben
    • 33
  • S. Bondarenko
    • 18
  • M. Bonvini
    • 134
    • 272
  • E. Boos
    • 222
  • B. Bordini
    • 65
  • F. Bordry
    • 65
  • G. Borghello
    • 65
    • 276
  • L. Borgonovi
    • 119
    • 259
  • S. Borowka
    • 65
  • D. Bortoletto
    • 191
  • D. Boscherini
    • 119
    • 259
  • M. Boscolo
    • 116
  • S. Boselli
    • 131
    • 270
  • R. R. Bosley
    • 291
  • F. Bossu
    • 33
  • C. Botta
    • 65
  • L. Bottura
    • 65
  • R. Boughezal
    • 12
  • D. Boutin
    • 40
  • G. Bovone
    • 44
  • I. Božović Jelisavić
    • 341
  • A. Bozbey
    • 239
  • C. Bozzi
    • 123
    • 262
  • D. Bozzini
    • 65
  • V. Braccini
    • 44
  • S. Braibant-Giacomelli
    • 119
    • 259
  • J. Bramante
    • 194
    • 201
  • P. Braun-Munzinger
    • 78
  • J. A. Briffa
    • 312
  • D. Britzger
    • 170
  • S. J. Brodsky
    • 226
  • J. J. Brooke
    • 292
  • R. Bruce
    • 65
  • P. Brückman De Renstrom
    • 100
  • E. Bruna
    • 137
    • 275
  • O. Brüning
    • 65
  • O. Brunner
    • 65
  • K. Brunner
    • 173
  • P. Bruzzone
    • 57
  • X. Buffat
    • 65
  • E. Bulyak
    • 182
  • F. Burkart
    • 65
  • H. Burkhardt
    • 65
  • J. -P. Burnet
    • 65
  • F. Butin
    • 65
  • D. Buttazzo
    • 133
    • 216
  • A. Butterworth
    • 65
  • M. Caccia
    • 128
    • 265
  • Y. Cai
    • 226
  • B. Caiffi
    • 125
    • 264
  • V. Cairo
    • 226
  • O. Cakir
    • 10
  • R. Calaga
    • 65
  • S. Calatroni
    • 65
  • G. Calderini
    • 33
  • G. Calderola
    • 117
  • A. Caliskan
    • 79
  • D. Calvet
    • 31
    • 282
  • M. Calviani
    • 65
  • J. M. Camalich
    • 103
  • P. Camarri
    • 135
    • 273
  • M. Campanelli
    • 284
  • T. Camporesi
    • 65
  • A. C. Canbay
    • 10
  • A. Canepa
    • 71
  • E. Cantergiani
    • 84
  • D. Cantore-Cavalli
    • 128
    • 267
  • M. Capeans
    • 65
  • R. Cardarelli
    • 135
    • 273
  • U. Cardella
    • 162
  • A. Cardini
    • 120
  • C. M. Carloni Calame
    • 131
    • 270
  • F. Carra
    • 65
  • S. Carra
    • 128
    • 267
  • A. Carvalho
    • 159
  • S. Casalbuoni
    • 147
  • J. Casas
    • 7
  • M. Cascella
    • 284
  • P. Castelnovo
    • 267
  • G. Castorina
    • 134
    • 272
  • G. Catalano
    • 267
  • V. Cavasinni
    • 133
    • 216
  • E. Cazzato
    • 287
  • E. Cennini
    • 65
  • A. Cerri
    • 329
  • F. Cerutti
    • 65
  • J. Cervantes
    • 65
  • I. Chaikovska
    • 33
  • J. Chakrabortty
    • 88
  • M. Chala
    • 55
  • M. Chamizo-Llatas
    • 21
  • H. Chanal
    • 31
  • D. Chanal
    • 28
  • S. Chance
    • 33
  • A. Chancé
    • 40
  • P. Charitos
    • 65
  • J. Charles
    • 5
  • T. K. Charles
    • 316
  • S. Chattopadhyay
    • 187
  • R. Chehab
    • 154
  • S. V. Chekanov
    • 12
  • N. Chen
    • 175
  • A. Chernoded
    • 222
  • V. Chetvertkova
    • 78
  • L. Chevalier
    • 40
  • G. Chiarelli
    • 133
    • 216
  • G. Chiarello
    • 134
    • 209
    • 272
  • M. Chiesa
    • 145
  • P. Chiggiato
    • 65
  • J. T. Childers
    • 12
  • A. Chmielińska
    • 57
    • 65
  • A. Cholakian
    • 80
    • 168
  • P. Chomaz
    • 40
  • M. Chorowski
    • 348
  • W. Chou
    • 98
  • M. Chrzaszcz
    • 100
  • E. Chyhyrynets
    • 117
  • G. Cibinetto
    • 123
    • 262
  • A. K. Ciftci
    • 141
  • R. Ciftci
    • 59
  • R. Cimino
    • 116
  • M. Ciuchini
    • 136
    • 274
  • P. J. Clark
    • 303
  • Y. Coadou
    • 4
    • 26
    • 32
  • M. Cobal
    • 138
    • 276
  • A. Coccaro
    • 125
  • J. Cogan
    • 32
    • 33
  • E. Cogneras
    • 30
  • F. Collamati
    • 134
    • 272
  • C. Colldelram
    • 7
  • P. Collier
    • 65
  • J. Collot
    • 33
    • 283
  • R. Contino
    • 216
  • F. Conventi
    • 129
  • C. T. A. Cook
    • 65
  • L. Cooley
    • 11
    • 178
  • G. Corcella
    • 116
    • 117
  • A. S. Cornell
    • 330
  • G. H. Corral
    • 36
  • H. Correia-Rodrigues
    • 65
  • F. Costanza
    • 33
  • P. Costa Pinto
    • 65
  • F. Couderc
    • 40
  • J. Coupard
    • 65
  • N. Craig
    • 297
  • I. Crespo Garrido
    • 336
  • A. Crivellin
    • 192
  • J. F. Croteau
    • 84
  • M. Crouch
    • 65
  • E. Cruz Alaniz
    • 143
  • B. Curé
    • 65
  • J. Curti
    • 168
  • D. Curtin
    • 331
  • M. Czech
    • 65
  • C. Dachauer
    • 162
  • R. T. D’Agnolo
    • 226
  • M. Daibo
    • 74
  • A. Dainese
    • 130
    • 268
  • B. Dalena
    • 40
  • A. Daljevec
    • 65
  • W. Dallapiazza
    • 86
  • L. D’Aloia Schwartzentruber
    • 27
  • M. Dam
    • 185
  • G. D’Ambrosio
    • 129
  • S. P. Das
    • 250
  • S. DasBakshi
    • 88
  • W. da Silva
    • 33
  • G. G. da Silveira
    • 252
  • V. D’Auria
    • 57
  • S. D’Auria
    • 267
  • A. David
    • 65
  • T. Davidek
    • 69
  • A. Deandrea
    • 33
    • 337
  • J. de Blas
    • 130
    • 268
  • C. J. Debono
    • 312
  • S. De Curtis
    • 124
    • 263
  • N. De Filippis
    • 118
    • 258
  • D. de Florian
    • 110
  • S. Deghaye
    • 65
  • S. J. de Jong
    • 95
    • 176
  • C. Del Bo
    • 267
  • V. Del Duca
    • 137
    • 275
  • D. Delikaris
    • 65
  • F. Deliot
    • 40
  • A. Dell’Acqua
    • 65
  • L. Delle Rose
    • 124
    • 263
  • M. Delmastro
    • 153
  • E. De Lucia
    • 116
  • M. Demarteau
    • 12
  • D. Denegri
    • 40
  • L. Deniau
    • 65
  • D. Denisov
    • 71
  • H. Denizli
    • 2
  • A. Denner
    • 334
  • D. d’Enterria
    • 65
  • G. de Rijk
    • 65
  • A. De Roeck
    • 65
  • F. Derue
    • 33
  • O. Deschamps
    • 33
  • S. Descotes-Genon
    • 33
  • P. S. B. Dev
    • 343
  • J. B. de Vivie de Régie
    • 33
  • R. K. Dewanjee
    • 179
  • A. Di Ciaccio
    • 135
    • 273
  • A. Di Cicco
    • 116
  • B. M. Dillon
    • 102
  • B. Di Micco
    • 136
    • 274
  • P. Di Nezza
    • 116
  • S. Di Vita
    • 128
    • 267
  • A. Doblhammer
    • 233
  • A. Dominjon
    • 153
  • M. D’Onofrio
    • 310
  • F. Dordei
    • 65
  • A. Drago
    • 116
  • P. Draper
    • 306
  • Z. Drasal
    • 69
  • M. Drewes
    • 148
  • L. Duarte
    • 249
  • I. Dubovyk
    • 85
  • P. Duda
    • 348
  • A. Dudarev
    • 65
  • L. Dudko
    • 222
  • D. Duellmann
    • 65
  • M. Dünser
    • 65
  • T. du Pree
    • 176
  • M. Durante
    • 40
  • H. Duran Yildiz
    • 10
  • S. Dutta
    • 225
  • F. Duval
    • 65
  • J. M. Duval
    • 41
    • 283
  • Y. Dydyshka
    • 56
  • B. Dziewit
    • 326
  • S. Eisenhardt
    • 303
  • M. Eisterer
    • 233
  • T. Ekelof
    • 338
  • D. El Khechen
    • 65
  • S. A. Ellis
    • 226
  • J. Ellis
    • 150
  • J. A. Ellison
    • 318
  • K. Elsener
    • 65
  • M. Elsing
    • 65
  • Y. Enari
    • 237
  • C. Englert
    • 211
  • H. Eriksson
    • 165
  • K. J. Eskola
    • 308
  • L. S. Esposito
    • 65
  • O. Etisken
    • 10
  • E. Etzion
    • 234
  • P. Fabbricatore
    • 125
    • 264
  • A. Falkowski
    • 33
  • A. Falou
    • 154
  • J. Faltova
    • 69
  • J. Fan
    • 22
  • L. Fanò
    • 132
    • 271
  • A. Farilla
    • 136
    • 274
  • R. Farinelli
    • 123
    • 262
  • S. Farinon
    • 125
    • 264
  • D. A. Faroughy
    • 102
  • S. D. Fartoukh
    • 65
  • A. Faus-Golfe
    • 33
  • W. J. Fawcett
    • 299
  • G. Felici
    • 116
  • L. Felsberger
    • 164
  • C. Ferdeghini
    • 43
  • A. M. Fernandez Navarro
    • 35
  • A. Fernández-Téllez
    • 16
  • J. Ferradas Troitino
    • 65
    • 305
  • G. Ferrara
    • 128
    • 267
  • R. Ferrari
    • 131
    • 270
  • L. Ferreira
    • 65
  • P. Ferreira da Silva
    • 65
  • G. Ferrera
    • 127
    • 267
  • F. Ferro
    • 125
    • 264
  • M. Fiascaris
    • 65
  • S. Fiorendi
    • 127
  • C. Fiorio
    • 267
  • O. Fischer
    • 147
    • 287
  • E. Fischer
    • 78
  • W. Flieger
    • 326
  • M. Florio
    • 267
  • D. Fonnesu
    • 65
  • E. Fontanesi
    • 119
    • 259
  • N. Foppiani
    • 80
  • K. Foraz
    • 65
  • D. Forkel-Wirth
    • 65
  • S. Forte
    • 267
  • M. Fouaidy
    • 90
  • D. Fournier
    • 33
  • T. Fowler
    • 65
  • J. Fox
    • 227
  • P. Francavilla
    • 133
    • 216
  • R. Franceschini
    • 136
    • 274
  • S. Franchino
    • 278
  • E. Franco
    • 134
    • 272
  • A. Freitas
    • 197
  • B. Fuks
    • 157
  • K. Furukawa
    • 82
  • S. V. Furuseth
    • 57
  • E. Gabrielli
    • 138
    • 276
  • A. Gaddi
    • 65
  • M. Galanti
    • 321
  • E. Gallo
    • 50
  • S. Ganjour
    • 40
  • J. Gao
    • 192
  • J. Gao
    • 98
  • V. Garcia Diaz
    • 117
  • M. García Pérez
    • 65
  • L. García Tabarés
    • 35
  • C. Garion
    • 65
  • M. V. Garzelli
    • 277
    • 281
  • I. Garzia
    • 123
    • 262
  • S. M. Gascon-Shotkin
    • 33
    • 337
  • G. Gaudio
    • 131
    • 270
  • P. Gay
    • 31
    • 33
  • S. -F. Ge
    • 237
    • 293
  • T. Gehrmann
    • 335
  • M. H. Genest
    • 33
    • 283
  • R. Gerard
    • 65
  • F. Gerigk
    • 65
  • H. Gerwig
    • 65
  • P. Giacomelli
    • 119
    • 259
  • S. Giagu
    • 134
    • 272
  • E. Gianfelice-Wendt
    • 71
  • F. Gianotti
    • 65
  • F. Giffoni
    • 29
    • 267
  • S. S. Gilardoni
    • 65
  • M. Gil Costa
    • 35
  • M. Giovannetti
    • 116
  • M. Giovannozzi
    • 65
  • P. Giubellino
    • 78
    • 137
  • G. F. Giudice
    • 65
  • A. Giunta
    • 255
  • L. K. Gladilin
    • 222
  • S. Glukhov
    • 24
  • J. Gluza
    • 326
  • G. Gobbi
    • 65
  • B. Goddard
    • 65
  • F. Goertz
    • 169
  • T. Golling
    • 305
  • V. P. Goncalves
    • 253
  • R. Gonçalo
    • 159
  • L. A. Gonzalez Gomez
    • 116
  • S. Gorgi Zadeh
    • 322
  • G. Gorine
    • 57
  • E. Gorini
    • 126
    • 257
  • S. A. Gourlay
    • 161
  • L. Gouskos
    • 297
  • F. Grancagnolo
    • 126
    • 266
  • A. Grassellino
    • 71
  • A. Grau
    • 147
  • E. Graverini
    • 335
  • H. M. Gray
    • 161
  • Ma. Greco
    • 136
    • 274
  • Mi. Greco
    • 136
    • 274
  • J. -L. Grenard
    • 65
  • O. Grimm
    • 60
  • C. Grojean
    • 50
  • V. A. Gromov
    • 144
  • J. F. Grosse-Oetringhaus
    • 65
  • A. Grudiev
    • 65
  • K. Grzanka
    • 326
  • J. Gu
    • 142
  • D. Guadagnoli
    • 153
  • V. Guidi
    • 123
    • 262
  • S. Guiducci
    • 116
  • G. Guillermo Canton
    • 36
  • Y. O. Günaydin
    • 146
  • R. Gupta
    • 21
  • R. S. Gupta
    • 55
  • J. Gutierrez
    • 89
  • J. Gutleber
    • 65
  • C. Guyot
    • 40
  • V. Guzey
    • 195
  • C. Gwenlan
    • 191
  • C. Haberstroh
    • 231
  • B. Hacışahinoğlu
    • 113
  • B. Haerer
    • 65
  • K. Hahn
    • 188
  • T. Hahn
    • 345
  • A. Hammad
    • 287
  • C. Han
    • 237
  • M. Hance
    • 298
  • A. Hannah
    • 212
  • P. C. Harris
    • 168
  • C. Hati
    • 31
    • 282
  • S. Haug
    • 290
  • J. Hauptman
    • 111
  • V. Haurylavets
    • 96
  • H. -J. He
    • 220
  • A. Hegglin
    • 218
    • 221
  • B. Hegner
    • 21
  • K. Heinemann
    • 318
  • S. Heinemeyer
    • 106
  • C. Helsens
    • 65
  • A. Henriques
    • 65
  • A. Henriques
    • 65
  • P. Hernandez
    • 105
  • R. J. Hernández-Pinto
    • 246
  • J. Hernandez-Sanchez
    • 16
  • T. Herzig
    • 99
  • I. Hiekkanen
    • 165
  • W. Hillert
    • 277
  • T. Hoehn
    • 232
  • M. Hofer
    • 233
  • W. Höfle
    • 65
  • F. Holdener
    • 221
  • S. Holleis
    • 233
  • B. Holzer
    • 65
  • D. K. Hong
    • 200
  • C. G. Honorato
    • 16
  • S. C. Hopkins
    • 65
  • J. Hrdinka
    • 65
  • F. Hug
    • 142
  • B. Humann
    • 233
  • H. Humer
    • 13
  • T. Hurth
    • 142
  • A. Hutton
    • 238
  • G. Iacobucci
    • 305
  • N. Ibarrola
    • 65
  • L. Iconomidou-Fayard
    • 33
  • K. Ilyina-Brunner
    • 65
  • J. Incandela
    • 297
  • A. Infantino
    • 65
  • V. Ippolito
    • 134
    • 272
  • M. Ishino
    • 237
  • R. Islam
    • 87
  • H. Ita
    • 8
  • A. Ivanovs
    • 204
  • S. Iwamoto
    • 268
  • A. Iyer
    • 129
  • S. Izquierdo Bermudez
    • 65
  • S. Jadach
    • 100
  • D. O. Jamin
    • 101
  • P. Janot
    • 65
  • P. Jarry
    • 40
  • A. Jeff
    • 37
    • 65
  • P. Jenny
    • 166
  • E. Jensen
    • 65
  • M. Jensen
    • 67
  • X. Jiang
    • 280
  • J. M. Jiménez
    • 65
  • M. A. Jones
    • 65
  • O. R. Jones
    • 65
  • J. M. Jowett
    • 65
  • S. Jung
    • 217
  • W. Kaabi
    • 33
  • M. Kado
    • 65
    • 134
    • 272
  • K. Kahle
    • 65
  • L. Kalinovskaya
    • 56
  • J. Kalinowski
    • 332
  • J. F. Kamenik
    • 102
  • K. Kannike
    • 179
  • S. O. Kara
    • 10
    • 186
  • H. Karadeniz
    • 76
  • V. Karaventzas
    • 65
  • I. Karpov
    • 65
  • S. Kartal
    • 113
  • A. Karyukhin
    • 94
  • V. Kashikhin
    • 71
  • J. Katharina Behr
    • 50
  • U. Kaya
    • 10
    • 239
  • J. Keintzel
    • 233
  • P. A. Keinz
    • 340
  • K. Keppel
    • 117
  • R. Kersevan
    • 65
  • K. Kershaw
    • 65
  • H. Khanpour
    • 210
    • 325
  • S. Khatibi
    • 49
    • 210
  • M. Khatiri Yanehsari
    • 210
  • V. V. Khoze
    • 55
  • J. Kieseler
    • 65
  • A. Kilic
    • 245
  • A. Kilpinen
    • 165
  • Y. -K. Kim
    • 300
  • D. W. Kim
    • 75
  • U. Klein
    • 310
  • M. Klein
    • 310
  • F. Kling
    • 295
  • N. Klinkenberg
    • 65
    • 68
  • S. Klöppel
    • 231
  • M. Klute
    • 168
  • V. I. Klyukhin
    • 222
  • M. Knecht
    • 32
    • 33
  • B. Kniehl
    • 85
  • F. Kocak
    • 245
  • C. Koeberl
    • 184
  • A. M. Kolano
    • 65
  • A. Kollegger
    • 285
  • K. Kołodziej
    • 326
  • A. A. Kolomiets
    • 144
  • J. Komppula
    • 65
  • I. Koop
    • 24
  • P. Koppenburg
    • 176
  • M. Koratzinos
    • 168
  • M. Kordiaczyńska
    • 326
  • M. Korjik
    • 96
  • O. Kortner
    • 345
  • P. Kostka
    • 310
  • W. Kotlarski
    • 231
  • C. Kotnig
    • 65
  • T. Köttig
    • 65
  • A. V. Kotwal
    • 54
  • A. D. Kovalenko
    • 144
  • S. Kowalski
    • 326
  • J. Kozaczuk
    • 306
  • G. A. Kozlov
    • 144
  • S. S. Kozub
    • 144
  • A. M. Krainer
    • 65
  • T. Kramer
    • 65
  • M. Krämer
    • 203
  • M. Krammer
    • 65
  • A. A. Krasnov
    • 24
  • F. Krauss
    • 55
  • K. Kravalis
    • 204
  • L. Kretzschmar
    • 340
  • R. M. Kriske
    • 168
  • H. Kritscher
    • 184
  • P. Krkotic
    • 7
  • H. Kroha
    • 170
  • M. Kucharczyk
    • 100
  • S. Kuday
    • 112
  • A. Kuendig
    • 162
  • G. Kuhlmann
    • 72
  • A. Kulesza
    • 346
  • M. Kumar
    • 57
  • M. Kumar
    • 330
  • A. Kusina
    • 100
  • S. Kuttimalai
    • 226
  • M. Kuze
    • 240
  • T. Kwon
    • 217
  • F. Lackner
    • 65
  • M. Lackner
    • 285
  • E. La Francesca
    • 116
    • 272
  • M. Laine
    • 290
  • G. Lamanna
    • 153
  • S. La Mendola
    • 65
  • E. Lançon
    • 21
  • G. Landsberg
    • 22
  • P. Langacker
    • 91
  • C. Lange
    • 65
  • A. Langner
    • 65
  • A. J. Lankford
    • 295
  • J. P. Lansberg
    • 33
  • T. Lari
    • 127
  • P. J. Laycock
    • 310
  • P. Lebrun
    • 66
  • A. Lechner
    • 65
  • K. Lee
    • 217
  • S. Lee