Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Pair spin–orbit interaction in low-dimensional electron systems

  • 9 Accesses

Abstract

The pair spin–orbit interaction (PSOI) is the spin–orbit component of the electron–electron interaction that originates from the Coulomb fields of the electrons. This relativistic component, which has been commonly assumed small in the low-energy approximation, appears large and very significant in materials with the strong SOI The PSOI, being determined by the spins and momenta of electrons, has highly unusual properties among which of most interest is the mutual attraction of the electrons in certain spin configurations. We review the nature of the PSOI in solids and its manifestations in low-dimensional systems that have been studied to date. The specific results depend on the configuration of the Coulomb fields in a particular structure. The main actual structures are considered: one-dimensional quantum wires and two-dimensional layers, both suspended and placed in various dielectric media, as well as in the presence of a metallic gate. We discuss the possible types of the two-electron bound states, the conditions of their formation, their spectra together with the spin and orbital structure. In a many-particle system, the PSOI breaks the spin-charge separation as a result of which spin and charge degrees of freedom are mixed in the collective excitations. At sufficiently strong PSOI, one of the collective modes softens. This signals of the instability, which eventually leads to the reconstruction of the homogeneous state of the system.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    G. Breit, Phys. Rev. 34, 553 (1929)

  2. 2.

    G. Breit, Phys. Rev. 36, 383 (1930)

  3. 3.

    G. Breit, Phys. Rev. 39, 616 (1932)

  4. 4.

    Y. Gindikin, V.A. Sablikov, Phys. Rev. B 95, 045138 (2017)

  5. 5.

    Y. Gindikin, Phys. Status Solidi Rapid Res. Lett. 11, 1700256 (2017)

  6. 6.

    Y. Gindikin, V.A. Sablikov, Phys. Status Solidi Rapid Res. Lett. 12, 1700313 (2018)

  7. 7.

    Y. Gindikin, V.A. Sablikov, Phys. Status Solidi Rapid Res. Lett. 12, 1800209 (2018)

  8. 8.

    Y. Gindikin, V.A. Sablikov, Phys. Rev. B 98, 115137 (2018)

  9. 9.

    Y. Gindikin, V.A. Sablikov, Physica E 108, 187 (2019)

  10. 10.

    Y. Gindikin, V. Vigdorchik, V.A. Sablikov, https://arXiv:1904.09510 (2019)

  11. 11.

    H.A. Bethe, E.E. Salpeter,Quantum mechanics of one- and two-electron atoms (Springer, Berlin, 1957)

  12. 12.

    R. Winkler, Spin-orbit coupling effects in two-dimensional electron and hole systems, Vol. 191 ofSpringer Tracts in Modern Physics (Springer, Berlin, 2003)

  13. 13.

    J. Voit, Rep. Prog. Phys. 58, 977 (1995)

  14. 14.

    A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

  15. 15.

    M.S. Dresselhaus, G. Dresselhaus, P. Eklund, A. Rao, The physics of fullerene-based and fullerene-related materials, Vol. 23 ofPhysics and Chemistry of Materials with Low-Dimensional Structures (Springer, Dordrecht, 2000)

  16. 16.

    F. Ortmann, S. Roche, S.O. Valenzuela,Topological insulators: fundamentals and perspectives (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2015)

  17. 17.

    A. Bansil, H. Lin, T. Das, Rev. Mod. Phys. 88, 021004 (2016)

  18. 18.

    S.Q. Shen,Topological insulators: Dirac equation in condensed matter (Springer, Singapore, 2017)

  19. 19.

    N.P. Armitage, E.J. Mele, A. Vishwanath, Rev. Mod. Phys. 90, 015001 (2018)

  20. 20.

    S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, Nat. Rev. Mater. 2, 17033 (2017)

  21. 21.

    P.A.M. Dirac, Proc. R. Soc. Lond. A 117, 610 (1928)

  22. 22.

    M.I. Dyakonov, Spin physics in semiconductors, Vol. 157 ofSpringer Series in Solid-State Sciences (Springer International Publishing, Cham, 2017)

  23. 23.

    W. Pauli,General principles of quantum mechanics (Springer-Verlag, Berlin, 1980)

  24. 24.

    G. Dresselhaus, Phys. Rev. 100, 580 (1955)

  25. 25.

    E.I. Rashba, V.I. Sheka, Fiz. Tverd. Tela: Collected Papers 2, 162 (1959)

  26. 26.

    G. Bir, G. Pikus,Symmetry and strain-induced effects in semiconductors (Wiley, New York, 1974)

  27. 27.

    M.M. Glazov, Electron & nuclear spin dynamics in semiconductor nanostructures, Vol. 23 ofSeries on Semiconductor Science and Technology (Oxford University Press, Oxford, 2018)

  28. 28.

    L.C.L.Y.Voon, M. Willatzen,The k ⋅ p method: electronic properties of semiconductors (Springer Science & Business Media, Berlin, 2009)

  29. 29.

    Y.A. Bychkov, E.I. Rashba, JETP Lett. 39, 78 (1984)

  30. 30.

    G. Bihlmayer, O. Rader, R. Winkler, New J. Phys. 17, 050202 (2015)

  31. 31.

    A. Manchon, H.C. Koo, J. Nitta, S.M. Frolov, R.A. Duine, Nat. Mater. 14, 871 (2015)

  32. 32.

    J. Smit, Physica 24, 39 (1958)

  33. 33.

    M.I. Dyakonov, V.I. Perel, ZhETF Pis. Red. 13, 657 (1971)

  34. 34.

    L. Berger, Phys. Rev. B 2, 4559 (1970)

  35. 35.

    P. Nozières, C. Lewiner, J. Phys. 34, 901 (1973)

  36. 36.

    A. Crépieux, P. Bruno, Phys. Rev. B 64, 014416 (2001)

  37. 37.

    H.A. Engel, B.I. Halperin, E.I. Rashba, Phys. Rev. Lett. 95, 166605 (2005)

  38. 38.

    J. Sinova, S.O. Valenzuela, J. Wunderlich, C.H. Back, T. Jungwirth, Rev. Mod. Phys. 87, 1213 (2015)

  39. 39.

    T. Giamarchi,Quantum physics in one dimension (Clarendon press, Oxford, 2003), Vol. 121

  40. 40.

    R.M. Martin, L. Reining, D.M. Ceperley,Interacting electrons: theory and computational approaches (Cambridge University Press, Cambridge, 2016)

  41. 41.

    E.O. Kane, J. Phys. Chem. Solids 1, 249 (1957)

  42. 42.

    J.R. McLaughlan, E.M. Llewellyn-Samuel, S. Crampin, J. Phys. Condens. Matter 16, 6841 (2004)

  43. 43.

    T. Nakazawa, N. Takagi, M. Kawai, H. Ishida, R. Arafune, Phys. Rev. B 94, 115412 (2016)

  44. 44.

    S. Tognolini, S. Achilli, L. Longetti, E. Fava, C. Mariani, M.I. Trioni, S. Pagliara, Phys. Rev. Lett. 115, 046801 (2015)

  45. 45.

    M.M. Glazov, M.A. Semina, S.M. Badalyan, G. Vignale, Phys. Rev. B 84, 033305 (2011)

  46. 46.

    P.D.C. King et al., Phys. Rev. Lett. 107, 096802 (2011)

  47. 47.

    K. Ishizaka et al., Nat. Mater. 10, 521 (2011)

  48. 48.

    S. Singh, A.H. Romero, Phys. Rev. B 95, 165444 (2017)

  49. 49.

    M.M. Otrokov et al., 2D Mater. 5, 035029 (2018)

  50. 50.

    A. López, L. Colmenárez, M. Peralta, F. Mireles, E. Medina, Phys. Rev. B 99, 085411 (2019)

  51. 51.

    D. Niesner, M. Wilhelm, I. Levchuk, A. Osvet, S. Shrestha, M. Batentschuk, C. Brabec, T. Fauster, Phys. Rev. Lett. 117, 126401 (2016)

  52. 52.

    J. Varignon, L. Vila, A. Barthelemy, M. Bibes, Nat. Phys. 14, 322 (2018)

  53. 53.

    L. Keldysh, Sov. Phys. JETP 29, 658 (1979)

  54. 54.

    G. Wang, A. Chernikov, M.M. Glazov, T.F. Heinz, X. Marie, T. Amand, B. Urbaszek, Rev. Mod. Phys. 90, 021001 (2018)

  55. 55.

    N. Rytova, Moscow Univ. Phys. Bull. 3, 30 (1967)

  56. 56.

    C. Rössler, M. Herz, M. Bichler, S. Ludwig, Solid State Commun. 150, 861 (2010)

  57. 57.

    D.A. Pokhabov, A.G. Pogosov, E.Y. Zhdanov, A.A. Shevyrin, A.K. Bakarov, A.A. Shklyaev, Appl. Phys. Lett. 112, 082102 (2018)

  58. 58.

    H. Allami, O.A. Starykh, D.A. Pesin, Phys. Rev. B 99, 104505 (2019)

  59. 59.

    F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark,NIST handbook of mathematical functions (Cambridge University Press, Cambridge, 2010)

  60. 60.

    P. Cudazzo, I.V. Tokatly, A. Rubio, Phys. Rev. B 84, 085406 (2011)

  61. 61.

    S.A. Mikhailov, APL Photon. 4, 034501 (2019)

  62. 62.

    T.C. Berkelbach, M.S. Hybertsen, D.R. Reichman, Phys. Rev. B 88, 045318 (2013)

  63. 63.

    M. Combescot, S.Y. Shiau,Excitons and Cooper pairs: two composite bosons in many-body physics (Oxford University Press, Oxford, 2015)

  64. 64.

    M.Y. Kagan, Modern trends in superconductivity and superfluidity, Vol. 874 ofLecture Notes in Physics (Springer, Berlin, 2013)

  65. 65.

    B. Simon, Ann. Phys. 97, 279 (1976)

  66. 66.

    W.M. Frank, D.J. Land, R.M. Spector, Rev. Mod. Phys. 43, 36 (1971)

  67. 67.

    V.N. Efimov, Sov. J. Nucl. Phys. 12, 589 (1971)

  68. 68.

    J.M. Lévy-Leblond, Phys. Rev. 153, 1 (1967)

  69. 69.

    J. Denschlag, G. Umshaus, J. Schmiedmayer, Phys. Rev. Lett. 81, 737 (1998)

  70. 70.

    K.M. Case, Phys. Rev. 80, 797 (1950)

  71. 71.

    L.D. Landau, E.M. Lifshitz, Course of theoretical physics, Vol. 3 of Quantum Mechanics (Pergamon Press, Oxford, 1958)

  72. 72.

    Y. Wang et al., Science 340, 734 (2013)

  73. 73.

    K. Meetz, II Nuovo Cim. (1955-1965) 34, 690 (1964)

  74. 74.

    H.E. Camblong, L.N. Epele, H. Fanchiotti, C.A. García Canal, Phys. Rev. Lett. 85, 1590 (2000)

  75. 75.

    S.R. Beane, P.F. Bedaque, L. Childress, A. Kryjevski, J. McGuire, U. van Kolck, Phys. Rev. A 64, 042103 (2001)

  76. 76.

    D. Bouaziz, M. Bawin, Phys. Rev. A 76, 032112 (2007)

  77. 77.

    K.S. Gupta, S.G. Rajeev, Phys. Rev. D 48, 5940 (1993)

  78. 78.

    G. Cuniberti, M. Sassetti, B. Kramer, J. Phys. Condens. Matter 8, L21 (1996)

  79. 79.

    G. Cuniberti, M. Sassetti, B. Kramer, Phys. Rev. B 57, 1515 (1998)

  80. 80.

    Y.M. Blanter, F.W.J. Hekking, M. Büttiker, Phys. Rev. Lett. 81, 1925 (1998)

  81. 81.

    V.A. Sablikov, B.S. Shchamkhalova, Phys. Rev. B 58, 13847 (1998)

  82. 82.

    V.A. Sablikov, B.S. Shchamkhalova, J. Low Temp. Phys. 118, 485 (2000)

  83. 83.

    V.A. Sablikov, Y. Gindikin, Phys. Rev. B 61, 12766 (2000)

  84. 84.

    Z. Zhong, N.M. Gabor, J.E. Sharping, A.L. Gaeta, P.L. McEuen, Nature Nanotechnology 3, 201 (2008)

  85. 85.

    D.F. Santavicca, D.E. Prober, Terahertz resonances and bolometric response of a single-walled carbon nanotube, in2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves, 2008, pp. 1–3

  86. 86.

    J.D. Chudow, D.F. Santavicca, D.E. Prober, Nano Lett. 16, 4909 (2016)

  87. 87.

    E. Bocquillon, V. Freulon, J.M. Berroir, P. Degiovanni, B. Plaçais, A. Cavanna, Y. Jin, G. Fève, Nat. Commun. 4, 1839 (2013)

Download references

Author information

Correspondence to Yasha Gindikin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gindikin, Y., Sablikov, V.A. Pair spin–orbit interaction in low-dimensional electron systems. Eur. Phys. J. Spec. Top. 229, 503–525 (2020). https://doi.org/10.1140/epjst/e2019-900086-6

Download citation