Advertisement

The European Physical Journal Special Topics

, Volume 228, Issue 11, pp 2381–2389 | Cite as

Dynamics of functional connectivity in multilayer cortical brain network during sensory information processing

  • Nikita S. Frolov
  • Vladimir A. Maksimenko
  • Marina V. Khramova
  • Alexander N. Pisarchik
  • Alexander E. HramovEmail author
Regular Article
  • 25 Downloads
Part of the following topical collections:
  1. Diffusion Dynamics and Information Spreading in Multilayer Networks

Abstract

Topology of a functional brain multilayer network is dynamically adjusted to provide optimal performance during accomplishing cognitive tasks, including sensory information processing. Functional connectivity between brain regions is achieved in terms of correlation or synchronization inference in recorded signals of neuronal activity. The promising approach for studying cortical network structure implies considering functional interactions in different frequency bands on the different layers of multilayer network model. Links between these layers can be restored based on cross-frequency couplings. While the topology of functional connectivity within each layer can be effectively restored from registered neurophysiological signals, mechanisms underlying coupling between different layers remain poorly understood. Here we consider evolution of the cortical network topology in alpha and beta frequency bands during visual stimuli processing. For each frequency band the functional connectivity between different brain regions is estimated by comparing Fourier spectra of EEG signals. The obtained functional topologies are considered as the layers of two-layer network. In the framework of a multilayer model we analyze evolution of functional network topology on both layers and reveal features of intralayer interaction underlying visual information processing in the brain.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.M. Shine, M. Breakspear, P.T. Bell, K.A. Ehgoetz Martens, R. Shine, O. Koyejo, O. Sporns, R.A. Poldrack, Nat. Neurosci. 22, 289 (2019)CrossRefGoogle Scholar
  2. 2.
    J.M. Shine, R.A. Poldrack, NeuroImage 180, 396 (2018)CrossRefGoogle Scholar
  3. 3.
    A. Avena-Koenigsberger, B. Misic, O. Sporns, Nat. Rev. Neurosci. 19, 17 (2018)CrossRefGoogle Scholar
  4. 4.
    V.V. Makarov, M.O. Zhuravlev, A.E. Runnova, P. Protasov, V.A. Maksimenko, N.S. Frolov, A.N. Pisarchik, A.E. Hramov, Phys. Rev. E 98, 062413 (2018)ADSCrossRefGoogle Scholar
  5. 5.
    K. Finc, K. Bonna, M. Lewandowska, T. Wolak, J. Nikadon, J. Dreszer, W. Duch, S. Kühn, Human Brain Mapping 38, 3659 (2017)Google Scholar
  6. 6.
    K. Hwang, J.M. Shine, M. D’esposito, Cereb. Cortex 29, 802 (2018)CrossRefGoogle Scholar
  7. 7.
    A. Shenhav, S. Musslick, F. Lieder, W. Kool, T.L. Griffiths, J.D. Cohen, M.M. Botvinick, Ann. Rev. Neurosci. 40, 99 (2017)CrossRefGoogle Scholar
  8. 8.
    G. Michalareas, J. Vezoli, S. Van Pelt, J.-M. Schoffelen, H. Kennedy, P. Fries, Neuron 89, 384 (2016)CrossRefGoogle Scholar
  9. 9.
    S. Lagarde, N. Roehri, I. Lambert, A. Trebuchon, A. McGonigal, R. Carron, D. Scavarda, M. Milh, F. Pizzo, B. Colombet, B. Giusiano, S. Medina Villalon, M. Guye, G. Bénar, F. Bartolomei, Brain 141, 2966 (2018)CrossRefGoogle Scholar
  10. 10.
    R. Vicente, M. Wibral, M. Lindner, G. Pipa, J. Comput. Neurosci. 30, 45 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    P. Fries, Neuron 88, 220 (2015)CrossRefGoogle Scholar
  12. 12.
    M. Le Van Quyen, J. Foucher, J.-P. Lachaux, E. Rodriguez, A. Lutz, J. Martinerie, F.J. Varela, J. Neurosci. Methods 111, 83 (2001)CrossRefGoogle Scholar
  13. 13.
    K. Schiecke, M. Wacker, F. Benninger, M. Feucht, L. Leistritz, H. Witte, IEEE Trans. Biomed. Eng. 62, 1937 (2015)CrossRefGoogle Scholar
  14. 14.
    V.A. Maksimenko, A. Lüttjohann, V.V. Makarov, M.V. Goremyko, A.A. Koronovskii, V. Nedaivozov, A.E. Runnova, G. van Luijtelaar, A.E. Hramov, S. Boccaletti, Phys. Rev. E 96, 012316 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    J.E. Lisman, O. Jensen, Neuron 77, 1002 (2013)CrossRefGoogle Scholar
  16. 16.
    V.A. Maksimenko, S. van Heukelum, V.V. Makarov, J. Kelderhuis, A. Lüttjohann, A.A. Koronovskii, A.E. Hramov, G. van Luijtelaar, Sci. Rep. 7, 2487 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    E.A. Buffalo, P. Fries, R. Landman, T.J. Buschman, R. Desimone, Proc. Natl. Acad. Sci. 108, 11262 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    V.A. Maksimenko, A.E. Runnova, N.S. Frolov, V.V. Makarov, V. Nedaivozov, A.A. Koronovskii, A. Pisarchik, A.E. Hramov, Phys. Rev. E 97, 052405 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    J. Aru, J. Aru, V. Priesemann, M. Wibral, L. Lana, G. Pipa, W. Singer, R. Vicente, Curr. Opin. Neurobiol. 31, 51 (2015)CrossRefGoogle Scholar
  20. 20.
    R.T. Canolty, E. Edwards, S.S. Dalal, M. Soltani, S.S. Nagarajan, H.E. Kirsch, M.S. Berger, N.M. Barbaro, R.T. Knight, Science 313, 1626 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    J.M. Palva, S. Palva, K. Kaila, J. Neurosci. 25, 3962 (2005)CrossRefGoogle Scholar
  22. 22.
    J.M. Buldú, M.A. Porter, Netw. Neurosci. 2, 418 (2018)CrossRefGoogle Scholar
  23. 23.
    M. De Domenico, S. Sasai, A. Arenas, Front. Neurosci. 10, 326 (2016)CrossRefGoogle Scholar
  24. 24.
    J. Kornmeier, M. Pfäffle, M. Bach, J. Vision 11, 12 (2011)CrossRefGoogle Scholar
  25. 25.
    V.A. Maksimenko, A.E. Hramov, V.V. Grubov, V.O. Nedaivozov, V.V. Makarov, A.N. Pisarchik, Nonlinear Dyn. 95, 1923 (2019)CrossRefGoogle Scholar
  26. 26.
    V.A. Maksimenko, A.E. Runnova, M.O. Zhuravlev, V.V. Makarov, V. Nedayvozov, V.V. Grubov, S.V. Pchelintceva, A.E. Hramov, A.N. Pisarchik, PloS one 12, e0188700 (2017)CrossRefGoogle Scholar
  27. 27.
    V.A. Maksimenko, A.E. Hramov, N.S. Frolov, A. Lüttjohann, V.O. Nedaivozov, V.V. Grubov, A.E. Runnova, V.V. Makarov, J. Kurths, A.N. Pisarchik, Front. Neurosci. 12, 949 (2018)CrossRefGoogle Scholar
  28. 28.
    R.H.S. Carpenter, Biocybern. Biomed. Eng. 32, 49 (2012)CrossRefGoogle Scholar
  29. 29.
    A.E. Hramov, N.S. Frolov, V.A. Maksimenko, V.V. Makarov, A.A. Koronovskii, J. Garcia-Prieto, L.F. Antón-Toro, F. Maestú, A.N. Pisarchik, Chaos Interdiscip. J. Nonlinear Sci. 28, 033607 (2018)CrossRefGoogle Scholar
  30. 30.
    P. Sauseng, W. Klimesch, W. Stadler, M. Schabus, M. Doppelmayr, S. Hanslmayr, W.R. Gruber, N. Birbaumer, Eur. J. Neurosci. 22, 2917 (2005)CrossRefGoogle Scholar
  31. 31.
    J.J. Foxe, A.C. Snyder, Front. Psychol. 2, 154 (2011)CrossRefGoogle Scholar
  32. 32.
    P. Sehatpour, S. Molholm, T.H. Schwartz, J.R. Mahoney, A.D. Mehta, D.C. Javitt, P.K. Stanton, J.J. Foxe, Proc. Natl. Acad. Sci. 105, 4399 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    M. Gola, M. Magnuski, I. Szumska, A. Wróbel, Int. J. Psychophysiol. 89, 334 (2013)CrossRefGoogle Scholar
  34. 34.
    H. Laufs, J.L. Holt, R. Elfont, M. Krams, J.S. Paul, K. Krakow, A. Kleinschmidt, NeuroImage 31, 1408 (2006)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Nikita S. Frolov
    • 1
  • Vladimir A. Maksimenko
    • 1
  • Marina V. Khramova
    • 2
  • Alexander N. Pisarchik
    • 1
    • 3
  • Alexander E. Hramov
    • 1
    Email author
  1. 1.Neuroscience and Cognitive Technology Laboratory, Innopolis UniversityInnopolis, The Republic of TatarstanRussia
  2. 2.Faculty of Computer Science, Saratov State UniversitySaratovRussia
  3. 3.Center for Biomedical Technology, Technical University of Madrid, Campus MontegancedoMadridSpain

Personalised recommendations