Advertisement

A study of Rayleigh–Bénard convection in hybrid nanoliquids with physically realistic boundaries

  • 17 Accesses

  • 1 Citations

Abstract

Linear and weakly nonlinear stability analyses of Rayleigh–Bénard convection in water–copper–alumina hybrid nanoliquid bounded by rigid isothermal boundaries is studied analytically. A single-phase description is used for the nanoliquid. Using a minimal Fourier series representation and an appropriate scaling a classical Lorenz model for rigid isothermal boundaries is derived. The Lorenz model is transformed to the Ginzburg–Landau model using the renormalization group method. The solution of the Ginzburg–Landau model is used to arrive at the expression of the Nusselt number. The study shows that the presence of two nanoparticles in water is to increase the coefficient of friction, advance the onset of convection and enhance the heat transfer. Further, it is shown that compared to a single nanoparticle the combined influence of two nanoparticles is more effective on heat transfer. The percentage of heat transfer enhancement in water due to Al2O3-Cu hybrid nanoparticles is almost twice that of Al2O3 nanopartcles. It is found that the hybrid nanoparticles of Al2O3-Cu intensify convection in water more than the mono nanoparticles of Al2O3 and the plots of stream function and isotherm point to this fact. The effect of the physically realistic rigid boundaries is to inhibit the onset of convection when compared with that of free boundaries.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

References

  1. 1.

    M. Gollin, D. Bjork, SAE Technical Paper, https://doi.org/10.4271/960372 (1996)

  2. 2.

    P.I. Frank, P.D. David,Fundamentals of heat transfer (Wiley, New York, 1981)

  3. 3.

    W.M. Yan, P.J. Sheen, Int. J. Heat Mass Transfer 43, 1651 (2000)

  4. 4.

    C.C. Wang, K.Y. Chi, Int. J. Heat Mass Transfer 43, 2681 (2000)

  5. 5.

    P. Ravi, Phy. Rev. Lett. 94, 025901 (2005)

  6. 6.

    H. Masuda, A. Ebata, K. Teramae, Netsu Bussei 4, 227 (1993)

  7. 7.

    S. Choi, ASME Publications Fed 231, 99 (1995)

  8. 8.

    J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, L.J. Thompson, Appl. Phys. Lett. 78, 718 (2001)

  9. 9.

    D.H. Kumar, H.E. Patel, V.R.K. Rajeev, T. Sundararajan, T. Pradeep, S.K. Das, Phys. Rev. Lett. 93, 144301 (2004)

  10. 10.

    S. Kakac, A. Pramuanjaroenkij, Int. J. Heat Mass Transfer 52, 3187 (2009)

  11. 11.

    Z. Haddad, H.F. Oztop, E. Abu-Nada, A. Mataoui, Renew. Sustain. Energy Rev. 16, 5363 (2012)

  12. 12.

    P.G. Siddheshwar, C. Kanchana, Int. J. Mech. Sci. 131–132, 1061 (2017)

  13. 13.

    C. Kanchana, Y. Zhao, Int. J. Heat Mass Transfer 127, 1031 (2018)

  14. 14.

    C. Kanchana, Y. Zhao, P.G. Siddheshwar, Phys. Fluids 30, 084101 (2018)

  15. 15.

    P.G. Siddheshwar, C. Kanchana, Meccanica 54, 451 (2019)

  16. 16.

    H.A. Mintsa, G. Roy, C.T. Nguyen, D. Doucet, Int. J. Therm. Sci. 48, 363 (2009)

  17. 17.

    J. Buongiorno, ASME J. Heat Transfer 128, 240 (2006)

  18. 18.

    P.G. Siddheshwar, C. Kanchana, Y. Kakimoto, A. Nakayama, ASME J. Heat Transfer 139, 012402 (2016)

  19. 19.

    P.G. Siddheshwar, K.M. Lakshmi, ASME J. Heat Transfer 141, 062405 (2019)

  20. 20.

    F. Garoosi, G. Bagheri, M.M. Rashidi, Powder Technol. 275, 239 (2015)

  21. 21.

    K. Khanafer, K. Vafai, M. Lightstone, Int. J. Heat Mass Transfer 46, 3639 (2003)

  22. 22.

    R.Y. Jou, S.C. Tzeng, Int. Commun. Heat Mass Transfer 33, 727 (2006)

  23. 23.

    P.G. Siddheshwar, N. Meenakshi, Int. J. Appl. Comput. Math. 3, 271 (2017)

  24. 24.

    C. Simó, D. Puigjaner, J. Herrero, F. Giralt, Commun. Nonlinear Sci. Numer. Simul. 15, 24 (2010)

  25. 25.

    J. Jawdat, I. Hashim, S. Momani, Math. Probl. Eng. 2012, 1 (2012)

  26. 26.

    S. Suresh, K. Venkitaraj, P. Selvakumar, M. Chandrasekar, Colloids Surf. A: Physicochem. Eng. Asp. 388, 41 (2011)

  27. 27.

    S. Suresh, K. Venkitaraj, P. Selvakumar, M. Chandrasekar, Exp. Therm. Fluid Sci. 38, 54 (2012)

  28. 28.

    F. Selimefendigil, A.J. Chamkha, Comput. Therm. Sci. 8, 555 (2016)

  29. 29.

    T. Hayat, S. Nadeem, Results Phys. 7, 2317 (2017)

  30. 30.

    K.A. Hamid, W.H. Azmi, M.F. Nabil, R. Mamat, IOP Conf. Series: Mater. Sci. Eng. 257, 012067 (2017)

  31. 31.

    L.S. Sundar, K.V. Sarma, M.K. Singh, A.C.M. Sousa, Renew. Sustain. Energy Rev. 68, 185 (2017)

  32. 32.

    W.F. Nabil, W.H. Azmi, K.A. Hamid, N.N.M. Zawawi, G. Priyandoka, R. Mamat, Int. Commun. Heat Mass Transfer 83, 30 (2017)

  33. 33.

    N. Ali, J.A. Teixeira, A. Addali1, J. Nanomater. 2018, 1 (2018)

  34. 34.

    M. Izadi, R. Mohebbi, D. Karimi, M.A. Sheremet, Chem. Eng. Process.: Process Intensif. 125, 56 (2018)

  35. 35.

    M.H. Esfe, S. Wongwises, A. Naderi, A. Asadi, M.R. Safaei, H. Rostamian, M. Dahari, A. Karimipour, Int. Commun. Heat Mass Transfer 66, 100 (2015)

  36. 36.

    S. Chandrasekhar,Hydrodynamic and hydromagnetic stability (Oxford University Press, New York, 1961)

  37. 37.

    E.N. Lorenz, J. Atmos. Sci. 20, 130 (1963)

  38. 38.

    T. Kunihiro, Prog. Theor. Phy. 97, 179 (1997)

  39. 39.

    N. Goldenfeld,Lectures on phase transitions and the renormalization group (Addison Wesley, Reading, Massachusetts, 1992)

  40. 40.

    L.Y. Chen, N. Goldenfeld, Y. Oono, Phy. Rev. Lett. 73, 1311 (1994)

  41. 41.

    P.G. Siddheshwar, inProceedings of International Conference on Mathematical Modeling in Science and Engineering, 2019, p. 46

Download references

Author information

Correspondence to Yi Zhao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kanchana, C., Siddheshwar, P.G. & Zhao, Y. A study of Rayleigh–Bénard convection in hybrid nanoliquids with physically realistic boundaries. Eur. Phys. J. Spec. Top. 228, 2511–2530 (2019) doi:10.1140/epjst/e2019-900074-1

Download citation