Advertisement

On convection-diffusion in non-Newtonian fluid flow in an annulus with wall oscillations

  • 16 Accesses

  • 1 Citations

Abstract

Dispersion of a solute in a Casson fluid flow in an annulus is studied by considering the flow unsteadiness due to the pulsatile pressure gradient and wall oscillations. The expression for velocity is derived under the assumption of low Womersley frequency parameter and also yield plane locations are estimated. Generalized dispersion method is used to solve the convective diffusion equation and hence estimated the dispersion coefficient. With this approach mean concentration is able to express in terms of convection and dispersion coefficients. Effects of yield stress, unsteadiness of the flow, annular gap and wall oscillations on axial velocity, yield plane locations of the flow, dispersion coefficient and mean concentration are analysed. Due to combined action of wall oscillations and flow oscillations, the dispersion coefficient is observed to be changing cyclically and took both positive and negative values which differs from the case of no wall oscillations where the dispersion coefficient seen to be taking only positive values. Both qualitative and quantitative changes are seen in mean concentration in the case of wall movement when compared with the case of no wall oscillations.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

References

  1. 1.

    G. Taylor, Proc. R. Soc. Lond. Ser. A 219, 186 (1953)

  2. 2.

    R. Aris, Proc. R. Soc. Lond. Ser. A 235, 67 (1956)

  3. 3.

    W.N. Gill, R. Sankarasubramanian, Proc. R. Soc. Lond. Ser. A 316, 341 (1970)

  4. 4.

    N.G. Barton, J. Fluid Mech. 126, 205 (1983)

  5. 5.

    R. Aris, Proc. R. Soc. Lond. Ser. A 259, 370 (1960)

  6. 6.

    H.G. Harris Jr., S.L. Goren, Chem. Eng. Sci. 22, 1571 (1967)

  7. 7.

    E.R. Holley, D.R. Harleman, H.B. Fischer, J. Hydraul. Div. ASCE 96, 1691 (1970)

  8. 8.

    P.C. Chatwin, J. Fluid Mech. 71, 513 (1975)

  9. 9.

    J.R. Zierenberg, H. Fujioka, R.B Hirschl, R.H. Bartlett, J.B. Grotberg, J. Biomech. Eng. 129, 202 (2007)

  10. 10.

    T.W. Secomb, J. Fluid Mech. 88, 273 (1978)

  11. 11.

    P.E. Hydon, T.J. Pedley, J. Fluid Mech. 249, 535 (1993)

  12. 12.

    S.L. Waters, J. Fluid Mech. 433, 193 (2001)

  13. 13.

    D. Broday, E. Kimmel, Int. J. Eng. Sci. 37, 836 (1999)

  14. 14.

    S. Bandyopadhyay, B.S. Mazumder, Int. J. Eng. Sci. 37, 1407 (1999)

  15. 15.

    C.O. Ng, Y.C. Bai, Acta Mech. 178, 65 (2005)

  16. 16.

    S. Paul, B.S. Mazumder, Int. J. Eng. Sci. 46, 1203 (2008)

  17. 17.

    S. Paul, Z. Angew. Math. Phys. 60, 899 (2009)

  18. 18.

    S. Paul, J. Appl. Math. Mech. 91, 23 (2011)

  19. 19.

    S. Ghoshal, Chem. Eng. Sci. 26, 185 (1971)

  20. 20.

    S. Agrawal, G. Jayaraman, Appl. Math. Modell. 18, 504 (1994)

  21. 21.

    K.M. Sharp, Ann. Biomed. Eng. 21, 407 (1993)

  22. 22.

    S.B. Hazra, A.S. Gupta, P. Niyogi, Heat Mass Transfer 32, 481 (1997)

  23. 23.

    R.K. Dash, G. Jayaraman, K.N. Mehta, Ann. Biomed. Eng. 28, 373 (2000)

  24. 24.

    P. Nagarani, G. Sarojamma, G. Jayaraman, Ann. Biomed. Eng. 32, 706 (2004)

  25. 25.

    P. Nagarani, G. Sarojamma, G. Jayaraman, Acta Mech. 187, 189 (2006)

  26. 26.

    P. Nagarani, B.T. Sebastian, Acta Mech. 224, 571 (2013)

  27. 27.

    B.T. Sebastian, P. Nagarani, inInterdisciplinary Topics in Applied Mathematics, Modeling and Computational Science (Springer, Cham, 2015), pp. 389–395

  28. 28.

    J. Rana, P.V.S.N. Murthy, J. Fluid Mech. 793, 877 (2016)

  29. 29.

    J. Rana, P.V.S.N. Murthy, Phys. Fluids 28, 11190 (2016)

  30. 30.

    J. Rana, P.V.S.N. Murthy, Proc. R. Soc. A 473, 20170427 (2017)

  31. 31.

    B.T. Sebastian, P. Nagarani, Korea-Aust. Rheol. J. 30, 261 (2018)

  32. 32.

    J. Aroesty, J.F. Gross, Microvasc. Res. 4, 1 (1972)

  33. 33.

    R.K. Dash, G. Jayaraman, K.N. Mehta, J. Biomech. 29, 917 (1996)

  34. 34.

    T.J. Pedley, R.D. Kamm, J. Fluid Mech. 193, 347 (1988)

  35. 35.

    W.E. Boyce, R.C. Diprima,Elementary Differential Equations and Boundary Value Problems (John Wiley & Sons, New Jersey, 2004)

  36. 36.

    C.G. Caro, T.J. Pedley, R.C. Schroter, W.A. Seed,The Mechanics of Circulation (Oxford University Press, New York, 1978)

  37. 37.

    B.S. Mazumder, S.K. Das, J. Fluid Mech. 239, 523 (1992)

  38. 38.

    R. Smith, J. Fluid Mech. 114, 379 (1982)

Download references

Author information

Correspondence to P. Nagarani.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sebastian, B.T., Nagarani, P. On convection-diffusion in non-Newtonian fluid flow in an annulus with wall oscillations. Eur. Phys. J. Spec. Top. 228, 2729–2752 (2019). https://doi.org/10.1140/epjst/e2019-900071-7

Download citation