We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Advertisement

Hydromagnetic forced convective flow of Carreau nanofluid over a wedge/plate/stagnation of the plate

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • 10 Accesses

  • 1 Citations

Abstract

The present work deals with the numerical study of two-dimensional incompressible, magnetohydrodynamic Falkner-Skan flow of Carreau nanofluid over wedge, plate and stagnation of the flat plate with convective boundary condition and chemical reaction. The influence of thermophoresis and Brownian motion are taken into account. Similarity transformations are utilized to transform the governing equations into a system of non-linear ordinary differential equations and solved numerically using Runge–Kutta Fehlberg scheme. A comparison has been made with the published results which reveals a good agreement. The influence of different physical parameters on flow, temperature and nanoparticle concentration distributions have been discussed in detail. A constitutional analysis has been made for skin friction coefficient, heat and mass transfer rates. Results elucidate that the influence of magnetic parameter on velocity is high over flat plate compared with wedge and stagnation point of the flat plate. Heat transfer performance is higher on shear thinning fluid compared with shear thickening fluid. Further, an increase in Brownian motion decreases the heat transfer rate but enhances the mass transfer rate.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

References

  1. 1.

    S.U.S. Choi, ASME FED 31/MD 66, 99 (1995)

  2. 2.

    U.H. Rizwan, S. Nadeem, Z.H. Khan, N.S. Akbar, Physica E 65, 17 (2015)

  3. 3.

    A. Malvandi, F. Hedayati, D.D. Ganji, Alexandria Eng. J. 57, 2199 (2018)

  4. 4.

    F. Mabood, N. Pochai, S. Shateyi, J. Eng. 2016, 5874864 (2016)

  5. 5.

    M. Sheikholeslami, D.D. Ganji, Physica A 417, 273 (2015)

  6. 6.

    M.S. Kandelousi, Eur. Phy. J. Plus 129, 248 (2014)

  7. 7.

    G. Kumaran, O.D. Makinde, R. Sivaraj, Defect Diffus. Forum 387, 653 (2018)

  8. 8.

    R Sivaraj, I.L., Animasaun, A.S. Olabiyi, S. Saleem, N. Sandeep, Multidiscipline Model. Mater. Struct. 14, 695 (2018)

  9. 9.

    G. Kumaran, N. Sandeep, J. Mol. Liq. 233, 262 (2017)

  10. 10.

    W.A. Khan, Z.H. Khan, R.U. Haq, Eur. Phy. J. Plus, 130, 86 (2015)

  11. 11.

    R. Sivaraj, B. Rushi Kumar, Int. J. Heat Mass Transfer 55, 3076 (2012)

  12. 12.

    B. Rushi Kumar, R. Sivaraj, Int. J. Heat Mass Transfer 56, 370 (2013)

  13. 13.

    M. Sheikholeslami, D.D. Ganji, Int. J. Num. Method Heat Fluid Flow 27, 1535 (2017)

  14. 14.

    V.M. Falkner, S.W. Skan, Aeronautical Research Council, London, Rep. Mem. no 1314, 1930

  15. 15.

    I. Ullah, S.S. Khan, K.L. Hsiao, Results Phys. 9, 183 (2018)

  16. 16.

    C.S.K. Raju, N. Sandeep, Alexandria Eng. J. 55, 2045 (2016)

  17. 17.

    H.T. Lin, L.-K. Lin, Int. J. Heat Mass Transfer 30, 1111 (1987)

  18. 18.

    W.S. Yu, H.T. Lin, T. Yungg, Int. J. Heat Mass Transfer 34, 2491 (1991)

  19. 19.

    W.T. Cheng, H.T. Lin, Int. J. Eng. Sci. 40, 231 (2002)

  20. 20.

    M. Khan, M. Azam, A. Munir, J. Mol. Liq. 230, 48 (2017)

  21. 21.

    R. Kandasamy, I. Muhaimin, A.B. Khamis, Heat Mass Transfer 45, 703 (2009)

  22. 22.

    A.J. Chamkha, M. Mujtaba, A. Quadri, C. Issa, Heat Mass Transfer 39, 305 (2003)

  23. 23.

    C. Sulochana, G.P. Ashwinkumar, N. Sandeep, Alexandria Eng. J. 55, 1151 (2016)

  24. 24.

    M. Khan, M. Azam, J. Mol. Liq. 225, 554 (2017)

  25. 25.

    M. Waqas, M.I. Khan, T. Hayat, A. Alsaedi, Comput. Methods Appl. Mech. Eng. 324, 640 (2017)

  26. 26.

    K. Sharada, B. Shankar, J. Nanofluids 6, 1143 (2017)

  27. 27.

    M. Khan, M. Azam, A.S. Alshomrani, Results Phys. 7, 2261 (2017)

  28. 28.

    M. Khan, Hashim, AIP Adv. 5, 107203 (2015)

  29. 29.

    M. Khan, Hashim, M. Hussain, M. Azam, J. Magn. Magn. Mater. 412, 63 (2016)

  30. 30.

    T. Hayata, S. Qayyuma, A. Alsaedi, A. Shafiqc, Results Phys. 10, 521 (2018)

  31. 31.

    T. Hayat, S. Asad, M. Mustafa, A. Alsaedi, Appl. Math. Comput. 246, 12 (2014)

  32. 32.

    A. Chamkha, S. Abbasbandy, A.M. Rashad, Int. J. Num. Method Heat Fluid Flow 25, 422 (2015)

  33. 33.

    R. Vemula, A.J. Chamkha, M.P. Mallesh, Int. J. Num. Meth. Heat Fluid Flow 26, 328 (2016)

  34. 34.

    S.M. Atif, S. Hussain, M. Sagheer, Phys. Lett. A 383, 1187 (2019)

  35. 35.

    H. Sardar, L. Ahmad, M. Khan, A.S. Alshomrani, Int. J. Heat Mass Transfer 137, 809 (2019)

  36. 36.

    J. Ahmed, M. Khan, L. Ahmad, J. Mol. Liq. 287, 110853 (2019)

  37. 37.

    I. Haq, M. Shahzad, W.A. Khan, M. Irfan, S. Mustafa, M. Ali, F. Sultan, Case Stud. Therm. Eng. 14, 100432 (2019)

Download references

Author information

Correspondence to R. Sivaraj.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumaran, G., Sivaraj, R., Subramanyam Reddy, A. et al. Hydromagnetic forced convective flow of Carreau nanofluid over a wedge/plate/stagnation of the plate. Eur. Phys. J. Spec. Top. 228, 2647–2659 (2019). https://doi.org/10.1140/epjst/e2019-900069-2

Download citation