Advertisement

Mixed convection Ag-MgO/water hybrid nanofluid flow in a porous horizontal channel

  • 11 Accesses

  • 1 Citations

Abstract

Heat transfer and fluid flow of hybrid nanofluid into horizontal rectangular porous channel is numerically investigated. The Darcy-Brinkman-Forchheimer model is used and the finite volume method is employed to solve the governing equations. The effect of nanoparticle volume fractions (φ), permeability (Darcy number Da) and porosity (ε) of porous medium and Richardson number (Ri) on the flow field and heat transfer rate are analyzed and commented. The results, presented by streamlines, isotherms, temperature, velocity, and, local, average and normalized Nusselt numbers, reveal the periodic character of the flow in both of space and the time. The flow is characterized by thermoconvective cells which are influenced by the variation of the permeability and the addition of hybrid nanoparticles into the base fluid. The heat transfer rate increases by increasing the permeability and the porosity of porous medium. It enhances for certain nanoparticle volume fractions depending on the Darcy number. The effect of nanoparticles on the enhancement rate of heat transfer mount by increasing Richardson and Darcy numbers.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

References

  1. 1.

    D. Nield, A. Bejan,Convection in Porous Media, 3rd edn. (Springer, New York, 2006)

  2. 2.

    D.B. Ingham, I. Pop,Transport Phenomena in Porous Media III (Elsevier, Oxford, 2005)

  3. 3.

    K. Vafai,Porous Media: Applications in Biological Systems and Biotechnology (CRC Press, 2010)

  4. 4.

    C.M. Park, K.H. Chu, J. Heo, N. Her, M. Jang, A. Sond, Y. Yoon, J. Hazard. Mater. 309, 133 (2016)

  5. 5.

    J. Cai, W. Wei, X. Hu, D.A. Wood, Earth-Sci. Rev. 171, 419 (2017)

  6. 6.

    M. Islam Miah, M.A. Elhaj, S. Ahmed, M. Enamul Hossain, Fuel 226, 423 (2018)

  7. 7.

    Y.-L. He, Q. Liu, Q. Li, W.-Q. Tao, Int. J. Heat Mass Transfer 129, 160 (2019)

  8. 8.

    S.U.S. Choi,Enhancing thermal conductivity of fluids with nanoparticles, Developments and Applications of Non-Newtonian Flows (1995), FED-vol. 231/MDvol. 66, pp. 99–105

  9. 9.

    K. Mehmood, S. Hussain, M. Sagheer, J. Mol. Liq. 238, 485 (2017)

  10. 10.

    S. Hussain, K. Mehmood, M. Sagheer, M. Yamin, Int. J. Heat Mass Transfer 122, 1283 (2018)

  11. 11.

    S.P. Goqo, H. Mondal, P. Sibanda, S.S. Motsaa, Case Stud. Therm. Eng. 14, 100415 (2019)

  12. 12.

    S. Hussain, K. Mehmood, M. Sagheer, A. Farooq, Int. Commun. Heat Mass Transfer 89, 198 (2017)

  13. 13.

    A. Kasaeian, R. Daneshazarian, O. Mahian, L. Kolsi, A.J. Chamkha, S. Wongwises, I. Pop, Int. J. Heat Mass Transfer 107, 778 (2017)

  14. 14.

    H.J. Xu, Z.B. Xing, F.Q. Wang, Z.M. Cheng, Chem. Eng. Sci. 195, 462 (2019)

  15. 15.

    N.M. Sahraoui, S. Houat, N. Saidi, Eur. Phys. J. Appl. Phys. 78, 34806 (2017)

  16. 16.

    I. Fersadou, H. Kahalerras, M. El Ganaoui, Comput. Fluids 121, 164 (2015)

  17. 17.

    H. Xu, J. Cui, Int. J. Heat Mass Transfer 125, 1043 (2018)

  18. 18.

    A. Salehpour, S. Salehi, S. Salehpour, M. Ashja, Exp. Therm. Fluid Sci. 90, 1 (2018)

  19. 19.

    T. Wei Ting, Y. Mun Hung, N. Guo, Int. J. Heat Mass Transfer 81, 862 (2015)

  20. 20.

    B. Buonomo, O. Manca, S. Nappo, S. Nardini, Energy Procedia 148, 790 (2018)

  21. 21.

    M. Hemmat Esfe, A. Akbar Abbasian Arani, M. Rezaie, W.-M. Yan, A. Karimipour, Int. Commun. Heat Mass Transfer 66, 189 (2015)

  22. 22.

    Z. Mehrez, A. El Cafsi, J. Therm. Anal. Calorim. 135, 1417 (2019)

  23. 23.

    Y. Ma, R. Mohebbi, M.M. Rashidi, Z. Yang, Int. J. Heat Mass Transfer 137, 714 (2019)

  24. 24.

    S.A.M. Mehryan, F.M. Kashkooli, M. Ghalambaz, A.J. Chamkha, Adv. Powder Technol. 28, 2295 (2017)

  25. 25.

    M. Rajarathinam, N. Nithyadevi, A.J. Chamkha, Adv. Powder Technol. 29, 590 (2018)

  26. 26.

    Z. Mehrez, A. El Cafsi, A. Belghith, P. Le Quéré, Can. J. Phys. 93, 1615 (2015)

  27. 27.

    F. Zamzari, Z. Mehrez, A. El Cafsi, A. Belghith, P. Le Quéré, J. Hydrodyn. Ser. B 29, 632 (2017)

  28. 28.

    G. Comini, M. Manzan, G. Cortella, Numer. Heat Transfer B 31, 217 (1997)

  29. 29.

    G. Evans, S. Paolucci, Int. J. Numer. Methods Fluids 11, 1001 (1990)

  30. 30.

    M. Nourollahi, M. Farhadi, K. Sedighi, Therm. Sci. 14, 329 (2010)

  31. 31.

    Z. Mehrez, A. El Cafsi, Int. J. Appl. Comput. Math. 3, 489 (2017)

  32. 32.

    Z. Mehrez, A. El Cafsi, A. Belghith, P. Le Quéré, J. Magn. Magn. Mater. 374, 214 (2015)

  33. 33.

    Z. Mehrez, M. Bouterra, A. El Cafsi, A. Belghith, Comput. Fluids 88, 363 (2013)

  34. 34.

    Z. Mehrez, A. El Cafsi, A. Belghith, P. Le Quéré, Adv. Powder Technol. 26, 1442 (2015)

Download references

Author information

Correspondence to Zouhaier Mehrez.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jarray, A., Mehrez, Z. & El Cafsi, A. Mixed convection Ag-MgO/water hybrid nanofluid flow in a porous horizontal channel. Eur. Phys. J. Spec. Top. 228, 2677–2693 (2019). https://doi.org/10.1140/epjst/e2019-900068-8

Download citation