Advertisement

Analytical solution for differential nonlinear and coupled equations in micropolar nanofluid flow between rotating parallel plates

  • 20 Accesses

  • 1 Citations

Abstract

This paper presents solution to micropolar nanofluid between two parallel plates in a rotating system via a new and innovative semi-analytical method called Akbari-Ganji’s method (AGM). The nanofluid flow between two parallel plates is taken under the influence of Hall current. The flow of micropolar nanofluid is in steady state. We get a set of differential nonlinear and coupled equations from suitable similarity variables and the elementary governing equations. Moreover, the physical discussion of the embedded parameters in the equations that is, viscosity parameter Re, rotating parameter Kr, magnetic parameter M, Prandtl number Pr, thermophoretic parameter Nt, Brownian motion parameter Nb, and Schmidt number Sc, by showing figures and tables, they have been analyzed. Our results show that the employed method is very efficient and practical for obtaining solutions to this category of coupled equations and the solutions are in excellent agreement for nonlinear higher order differential equations in engineering.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

References

  1. 1.

    A.C. Eringen, Int. J. Eng. Sci. 2, 205 (1964)

  2. 2.

    A.C. Eringen, J. Math. Mech. 16, 1 (1966)

  3. 3.

    G. Lukaszewicz,Micropolar fluids: Theory and applications (Brikhauser, Basel, 1999)

  4. 4.

    A.A. Mohammeadein, R.S.R. Gorla, Acta. Mech. 118, 1 (1966)

  5. 5.

    R.S. Agarwal, C. Dhanapal, Int. J. Eng. Sci. 26, 1247 (1988)

  6. 6.

    R. Bhargava, L. Kumar, H.S. Takhar, Int. J. Eng. Sci. 41, 2161 (2003)

  7. 7.

    R. Nazar, N. Amin, D. Filip, I. Pop, Int. J. Nonlinear Mech. 39, 1227 (2004)

  8. 8.

    A. Ishak, R. Nazar, I. Pop, Comput. Math. Appl. 58, 3188 (2008)

  9. 9.

    Z. Pop, G. Domairry, Adv. Theor. Appl. Mech. 2, 79 (2008)

  10. 10.

    D. Srinivasacharya, J.V. Ramana Murthy, D. Venugopalam, Int. J. Eng. Sci. 39, 1557 (2001)

  11. 11.

    S. Nadeem, M. Sadaf, M. Rashid, A.S. Muhammad, PLOS One 6, 0124016 (2016)

  12. 12.

    S. Nadeem, R. Mehmood, S. Masood, J. Magn. Magn. Mater. 401, 1006 (2016)

  13. 13.

    S. Das, S.U. Choi, W. Yu, T. Pradeep, inNanofluids Science and Technology (Wiley-, 2007), p. 397

  14. 14.

    X.Q. Wang, S. Mujumdar, Braz. J. Chem. Eng. 04, 631 (2008)

  15. 15.

    J.H. He, Comput. Meth. Appl. Mech. Eng. 178, 257 (1999)

  16. 16.

    M. Sheikholeslami, H.R. Ashorynejad, D.D.A. Ganji, A. Yildirim, Sci. Iran. 19, 437 (2012)

  17. 17.

    S.S. Samaee, O. Yazdanpanah, D.D. Ganji, J. Braz. Soc. Mech. Sci. Eng. 37, 937 (2015)

  18. 18.

    S.T. Mohyud-Din, M.A. Noor, K.I. Noor, M.M. Hosseini, Int. J. Nonlinear Sci. Numer. Simul. 11, 87 (2011)

  19. 19.

    S.T. Mohyud-Din, M.A. Noor, K.I. Noor, Math. Probl. Eng. 2009, 234849 (2009)

  20. 20.

    Q. Zhou, H. Rezazadeh, A. Korkmaz, M. Eslami, M. Mirzazadeh, M. Rezazadeh, Opt. Appl. 49, 1 (2019)

  21. 21.

    H. Rezazadeh, S.M. Mirhosseini-Alizamini, M. Eslami, M. Rezazadeh, M. Mirzazadeh, S. Abbagari, Optik 172, 545 (2018)

  22. 22.

    A. Fakhari, D.D. Ganji, Ebrahimpour, Phys. Lett. A 368, 64 (2007)

  23. 23.

    D.D. Ganji, M. Fazeli, Commun. Nonlinear Sci. Numer. Simul. 14, 489 (2009)

  24. 24.

    M. Sheikholeslami, D.D. Ganji, Comput. Methods Appl. Mech. Eng. 283, 651 (2015)

  25. 25.

    L.K. Zhou,Differential Transformation and Its Applications for Electrical Circuits (Huazhong University Press, Wuhan, 1986)

  26. 26.

    M. Momeni, N. Jamshidi, A. Barari, D.D. Ganji, Int. J. Comput. Math. 88, 135 (2011)

  27. 27.

    I. Mehdipour, D.D. Ganji, M. Mozaffari, Curr. Appl. Phys. 10, 104 (2010)

  28. 28.

    D. Kumar, J. Singh, S. Kumar, B.P. Sing, Shushila, Ain Shams Eng. J. 6, 605 (2015)

  29. 29.

    J. Singh, D. Kumar, R. Swroop, Alexandria Eng. J. 55, 1753 (2016)

  30. 30.

    D. Kumar, J. Singh, D. Baleanu, J. Comput. Nonlinear Dyn. 11, 061004 (2016)

  31. 31.

    M.A. Noor, S.T. Mohyud-Din, A. Waheed, E.A. Al-Said, Appl. Math. Comput. 216 477 (2010)

  32. 32.

    M.A. Noor, S.T. Mohyud-Din, A. Waheed, Acta Appl. Math. 104, 131 (2008)

  33. 33.

    S.T. Mohyud-Din, M.A. Noor, A. Waheed, Z. Naturforsch. A 65a, 78 (2010)

  34. 34.

    M.R. Akbari, D.D. Ganji, A. Majidian, A.R. Ahmadi, Front. Mech. Eng. 9, 177 (2014)

  35. 35.

    M.R. Akbari, D.D. Ganji, A.R. Goltabar, Dev. Appl. Ocean. Eng. 3, 22 (2014)

  36. 36.

    Z. Shah, S. Islam, T. Gul, E. Bonyah, M. Altaf Khan, Results Phys. 9, 1201 (2018)

  37. 37.

    E. Hall, Am. J. Math. 2, 287 (1879)

  38. 38.

    I. Pop, V.M. Soundalgekar, Acta Mech. 20, 315 (1974)

  39. 39.

    S. Ahmed, J. Zueco, Chem. Eng. Commun. 198, 1294 (2011)

  40. 40.

    A.M. Aziz, Int. J. Modern Phys. C 24, 1350044 (2013)

  41. 41.

    T. Hayat, M. Awais, M. Nawaz, S. Iram, A. Alsaedi, Int. J. Nonlinear Sci. Numer. Simul. 14, 167 (2013)

  42. 42.

    P. Sulochana, Am. J. Comput. Math. 4, 396 (2014)

  43. 43.

    M. Sheikholeslami, J. Mol. Liq. 234, 364 (2017)

  44. 44.

    M. Sheikholeslami, J. Mol. Liq. 229, 137 (2017)

  45. 45.

    M. Sheikholeslami, J. Mol. Liq. 231, 555 (2017)

  46. 46.

    M. Sheikholeslami, Phys. Lett. A 381, 494 (2017)

  47. 47.

    M. Sheikholeslami, Eur. Phys. J. Plus 129, 248 (2014)

  48. 48.

    M. Sheikholeslami, Eur. Phys. J. Plus 131, 413 (2016)

  49. 49.

    M. Sheikholeslami, Eur. Phys. J. Plus 132, 55 (2017)

Download references

Author information

Correspondence to A. Bekir.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Talarposhti, R.A., Asadi, Z., Rezazadeh, H. et al. Analytical solution for differential nonlinear and coupled equations in micropolar nanofluid flow between rotating parallel plates. Eur. Phys. J. Spec. Top. 228, 2601–2617 (2019). https://doi.org/10.1140/epjst/e2019-900061-2

Download citation