Entropy generation and nanofluid mixed convection in a C-shaped cavity with heat corner and inclined magnetic field

  • 21 Accesses

  • 1 Citations


A numerical simulation of entropy generation due to MHD mixed convective of water-copper nanofluid in a C-shaped cavity with a heated corner is performed. The cavity is subjected to an inclined uniform magnetic field, and the top wall of the cavity is adiabatic and moves with a constant velocity. The governing equations are formulated by employing the single-phase nanofluid approach and the resulting equations have been solved by the Finite Volume Method (FVM). Impacts of the pertinent parameters on the fluid flow and heat transfer inside the cavity have been presented graphically. The numerical data have been plotted in the portrait of streamlines, isotherms and the average Nusselt numbers. The effects of volume fraction, Hartmann number, and the aspect ratio on the entropy generation and mixed convection of the C-shaped cavity are investigated. It is found that for an aspect ratio = 0.1, increasing the nanofluid volume fraction causes an increment in the heat transfer. At low volume fractions and Hartmann numbers, the outcomes manifest a better thermal performance. Generally, the rate of entropy generation increases by increasing both the Hartmann number and the volume fraction.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA


  1. 1.

    O. Abouali, G. Ahmadi, Appl. Therm. Eng. 36, 1 (2012)

  2. 2.

    M. Mahmoodi, S.M. Hashemi, Int. J. Therm. Sci. 55, 76 (2012)

  3. 3.

    N. Makulati, A. Kasaeipoor, M.M. Rashidi, Adv. Powder Technol. 27, 661 (2016)

  4. 4.

    M.A. Mansour, M. Bakeir, A.J. Chamkha, Int. J. Numer. Methods Heat Fluid Flow 24, 1954 (2013)

  5. 5.

    M. Bayareh, A. Kianfar, A. Kasaeipoor, J. Heat Mass Transfer Res. 5, 129 (2018)

  6. 6.

    R. Mohebbi, M. Izadi, A.J. Chamkha, Phys. Fluids 29, 122009 (2017)

  7. 7.

    T. Armaghani, H. Esmaeili, Y.A. Mohammadpoor, I. Pop, Heat Mass Transfer 54, 1791 (2018)

  8. 8.

    A. Abedini, T. Armaghani, A.J. Chamkha, J. Therm. Anal. Calorim. 135, 685 (2019)

  9. 9.

    A. Bejan, J. Heat Transfer 101, 18 (1979)

  10. 10.

    A. Bejan, Adv. Heat Transfer 15, 1 (1982)

  11. 11.

    A. Bejan,Entropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes (CRC Press, Boca Raton, NY, 1996)

  12. 12.

    M. Ismael, T. Armaghani, A. Chamkha, J. Taiwan Inst. Chem. Eng. 59, 138 (2016)

  13. 13.

    A.J. Chamkha, M. Ismael, A. Kasaeipoor, T. Armaghani, Entropy 18, 50 (2016)

  14. 14.

    T. Armaghani, A. Kasaeipoor, L. Momayez, M.M. Rashidi, Y.A. Mohammadpoor, Therm. Sci.,

  15. 15.

    S.M. Aminossadati, B. Ghasemi, Eur. J. Mech. B 28, 630 (2009)

  16. 16.

    K. Khanafer, K. Vafai, M. Lightstone, Int. J. Heat Mass Transfer 46, 3639 (2003)

  17. 17.

    E. Abu-Nada, A.J. Chamkha, Int. J. Therm. Sci. 49, 2339 (2010)

  18. 18.

    J.A. Maxwell,Treatise on electricity and magnetism, 2nd edn. (Oxford University Press, Cambridge, UK, 1904)

  19. 19.

    H.C. Brinkman, J. Chem. Phys. 20, 571 (1952)

  20. 20.

    S. Mahmud, R.A. Fraser, Int. J. Heat Mass Transfer 47, 3245 (2004)

  21. 21.

    S.V. Patankar,Hemisphere (CRC Press, New York, 1980)

  22. 22.

    K.M. Khanafer, A.J. Chamkha, Int. J. Heat Mass Transfer 31, 1354 (1999)

  23. 23.

    R. Iwatsu, J.M Hyun, K. Kuwahara, Int. J. Heat Mass Transfer 36, 1601 (1993)

  24. 24.

    C.J. Ho, M.W. Chen, Z.W. Li, Int. J. Heat Mass Transfer 51, 4506 (2008)

Download references

Author information

Correspondence to T. Armaghani.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mansour, M.A., Armaghani, T., Chamkha, A.J. et al. Entropy generation and nanofluid mixed convection in a C-shaped cavity with heat corner and inclined magnetic field. Eur. Phys. J. Spec. Top. 228, 2619–2645 (2019) doi:10.1140/epjst/e2019-900050-3

Download citation