Advertisement

Analytical solitary wave solution of the dust ion acoustic waves for the damped forced modified Korteweg-de Vries equation in q-nonextensive plasmas

  • 19 Accesses

  • 1 Citations

Abstract

Analytical solitary wave solution of the dust ion acoustic waves is studied due to the damped forced modified Korteweg-de Vries equation in an unmagnetized collisional dusty plasma consisting of negatively charged dust grain, positively charged ions, q-nonextensive electrons, and neutral particles in the presence of external periodic force. Using reductive perturbation technique, the damped forced modified Korteweg-de Vries equation is obtained for the dust ion acoustic waves. Momentum consevation law is used to obtain the dust ion acoustic solitary wave solutions in the framework of the damped forced modified Korteweg-de Vries equation. The effects of different physical parameters such as entropic index, dust ion collisional frequency, strength and frequency of the external periodic force, speed of the traveling wave and the parameter which is the ratio between the unperturbed densities of the dust ions and electrons are investigated on the analytical solution of the dust ion acoustic waves. It is observed that those parameters have significant effects on the structures of the damped forced dust ion acoustic solitary waves. The results of the present paper may have applications in laboratory and space plasma environments.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

References

  1. 1.

    F. Verheest,Waves in Dusty Space Plasmas (Kluwer Academic, Dordrecht, 2000)

  2. 2.

    P.K. Shukla, A.A. Mamun,Introduction to Dusty Plasma Physics (CRC Press, Boca Raton, US, 2002)

  3. 3.

    A. Barkan, N. D’Angelo, R.L. Merlino, Planet. Space Sci. 44, 239 (1996)

  4. 4.

    S.K. El-Labany, E.F. El-Shamy, S.A. El-Warraki, Astrophys. Space Sci. 315, 287 (2008)

  5. 5.

    X. Wang, X. Bhattacharjee, S.K. Gou, J. Goree, Phys. Plasmas 8, 5018 (2001)

  6. 6.

    N.N. Rao, P.K. Shukla, M.Y. Yu, Planet. Space. Sci. 38, 543 (1990)

  7. 7.

    M. Horanyi, D.A. Mendis, J. Geophys. Res. 91, 355 (1986)

  8. 8.

    M. Horanyi, D.A. Mendis, Astrophys. J. 307, 800 (1986)

  9. 9.

    C.K. Goertz, Rev. Geophys. 27, 271 (1989)

  10. 10.

    T.G. Northrop, Phys. Scr. 75, 475 (1992)

  11. 11.

    D.A. Mendis, M. Rosenberg, IEEE Trans. Plasma Sci. 20, 929 (1992)

  12. 12.

    D.A. Mendis, M. Rosenberg, Annu. Rev. Astron. Astrophys. 32, 419 (1994)

  13. 13.

    F. Verheest, Space Sci. Rev. 77, 267 (1996)

  14. 14.

    J. Chu, J.B. Du, I. Lin, J. Phys. D Appl. Phys. 27, 296 (1994)

  15. 15.

    A. Bouchoute, A. Plain, L.P. Blondeau, C. Laure, J. Appl. Phys. 70, 1991 (1991)

  16. 16.

    H. Thomas, G.E. Morfill, V. Dammel, Phys. Rev. Lett. 73, 652 (1994)

  17. 17.

    I. Kourakis, P.K. Shukla, Eur. Phys. J. D 30, 97 (2004)

  18. 18.

    P.K. Shukla, M.Y. Yu, R. Bharuthram, J. Geophys. Res. 96, 21343 (1991)

  19. 19.

    P.K. Shukla, R.K. Varma, Phys. Fluids B 5, 236 (1993)

  20. 20.

    F. Melandso, Phys. Plasmas 3, 3890 (1996)

  21. 21.

    R.L. Merlino, A. Barkan, C. Thomson, N. D’Angelo, Phys. Plasmas 5, 1607 (1998)

  22. 22.

    M. Tribeche, T.H. Zerguini, Phys. Plasmas 11, 4115 (2004)

  23. 23.

    A.S. Bains, M. Tribeche, T.S. Gill, Phys. Plasmas 18, 022108 (2011)

  24. 24.

    H. Washimi, T. Tanaiuti, Phys. Rev. Lett. 17, 996 (1966)

  25. 25.

    E. Infeld, G. Rowlands,Nonlinear Waves, Soliton and Chaos (Cambridge University Press, Cambridge, 1990)

  26. 26.

    A. Sen, S. Tiwary, S. Mishra, P. Kaw, Adv. Space Res. 56, 429 (2015)

  27. 27.

    R. Ali, A. Saha, P. Chatterjee, Phys. Plasmas 24, 122106 (2017)

  28. 28.

    S. Chowdhury, L.K. Mandi, P. Chatterjee, Phys. Plasmas 25, 042112 (2018)

  29. 29.

    P. Chatterjee, R. Ali, A. Saha, Z. Naturforsch. 73, 151 (2018)

  30. 30.

    M. Shilov, C. Cates, R. James, Phys. Plasmas 11, 2573 (2004)

  31. 31.

    S. Safeer, S. Mahmood, Q. Haque, Astrophys. J. 793, 36 (2014)

  32. 32.

    P.K. Shukla, V.P. Silin, Phys. Scr. 45, 508 (1992)

  33. 33.

    Y. Nakamura, H. Bailung, P.K. Shukla, Phys. Rev. Lett. 83, 1602 (1999)

  34. 34.

    M.G.M. Anowar, A.A. Mamun, Phys. Lett. A 3, 725896 (2008)

  35. 35.

    S.S. Duha, A.A. Mamun, Phys. Lett. A 373, 1287 (2009)

  36. 36.

    M.K. Ghorui, P. Chatterjee, C.S. Wong, Astrophys. Space Sci. 343, 639 (2013)

  37. 37.

    J. Tamang, K. Sarkar, A. Saha, Physica A 505, 18 (2018)

  38. 38.

    A. Renyi, Acta Math. Hungar. 6, 285 (1955)

  39. 39.

    C. Tsallis, J. Stat. Phys. 52, 479 (1988)

  40. 40.

    R. Amour, M. Tribeche, Phys. Plasmas 17, 063702 (2010)

  41. 41.

    A. Saha, P. Chatterjee, Astrophys. Space Sci. 353, 169 (2014)

  42. 42.

    A. Saha, P. Chatterjee, Astrophys. Space Sci. 351, 533 (2014)

  43. 43.

    H.R. Pakzad, Phys. Scr. 83, 105505 (2011)

  44. 44.

    L. Liyan, J.L. Du, Physics A 387, 4821 (2008)

  45. 45.

    A. Saha, Nonlinear Dyn. 87, 2193 (2016)

  46. 46.

    T.K. Das, A. Saha, N. Pal, P. Chatterjee, Phys. Plasmas 24, 037707 (2017)

  47. 47.

    A. Saha, P. Chatterjee, Braz. J. Phys. 45, 419 (2015)

  48. 48.

    V.S. Aslanov, V.V. Yudintsev, Adv. Space Res. 55, 660 (2015)

Download references

Author information

Correspondence to Prasanta Chatterjee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mandi, L., Mondal, K.K. & Chatterjee, P. Analytical solitary wave solution of the dust ion acoustic waves for the damped forced modified Korteweg-de Vries equation in q-nonextensive plasmas. Eur. Phys. J. Spec. Top. 228, 2753–2768 (2019). https://doi.org/10.1140/epjst/e2019-900047-4

Download citation