Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

An overview of memristive cryptography


Smaller, smarter and faster edge devices in the Internet of things era demand secure data analysis and transmission under resource constraints of hardware architecture. Lightweight cryptography on edge hardware is an emerging topic that is essential to ensure data security in near-sensor computing systems such as mobiles, drones, smart cameras and wearables. In this article, the current state of memristive cryptography is placed in context of lightweight hardware cryptography. The paper provides a brief overview of the traditional hardware lightweight cryptography and cryptanalysis approaches. The contrast for memristive cryptography with respect to traditional approaches is evident through this article, and need to develop a more concrete approach to developing memristive cryptanalysis to test memristive cryptographic approaches is highlighted.

This is a preview of subscription content, log in to check access.


  1. 1.

    Z.-K. Zhang, M. Cheng Yi Cho, C.-W. Wang, C.-W. Hsu, C.-K. Chen, S. Shieh, IoT security: ongoing challenges and research opportunities, in 2014 IEEE 7th International Conference on Service-oriented Computing and Applications (IEEE, 2014), pp. 230–234

  2. 2.

    A. Dorri, S.S. Kanhere, R. Jurdak, P. Gauravaram, Blockchain for IoT security and privacy: the case study of a smart home, in 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops) (IEEE, 2017), pp. 618–623

  3. 3.

    J. Cache, V. Liu, J. Wright, Hacking Exposed Wireless: Wireless Security Secrets and Solutions (McGraw-Hill, 2007)

  4. 4.

    M. Warren, S. Leitch, Social engineering and its impact via the internet, in Proceedings of the 4th Australian Information Security Management Conference (Australian Information Security Management, 2006), pp. 184–189

  5. 5.

    J. Katz, A.J. Menezes, P.C. Van Oorschot, S.A. Vanstone, Handbook of Applied Cryptography (CRC Press, 1996)

  6. 6.

    M. Stamp, R.M. Low, Applied Cryptanalysis: Breaking Ciphers in the Real World (John Wiley & Sons, 2007)

  7. 7.

    K. Balasubramanian, Recent developments in cryptography: a survey, in Algorithmic Strategies for Solving Complex Problems in Cryptography (IGI Global, 2018), pp. 1–22

  8. 8.

    Y.B. Zhou, D.G. Feng, IACR Cryptol. ePrint Arch. 2005, 388 (2005)

  9. 9.

    E. Brier, M. Joye, Weierstra elliptic curves and side-channel attacks, in International Workshop on Public Key Cryptography (Springer, 2002), pp. 335–345

  10. 10.

    G. Joy Persial, M. Prabhu, R. Shanmugalakshmi, J. Int, Adva. Sci. Res. Rev. 1, 54 (2011)

  11. 11.

    A.V. Sergienko, Quantum Communications and Cryptography (CRC Press, 2018)

  12. 12.

    J. Buchmann, K. Lauter, M. Mosca, IEEE Security Privacy 16, 12 (2018)

  13. 13.

    I. Damaj, S. Kasbah, Comput. Electr. Eng. 69, 572 (2018)

  14. 14.

    S. Rajagopalan, R. Amirtharajan, H.N. Upadhyay, J.B. Balaguru Rayappan, J. App. Sci. 12, 201 (2012)

  15. 15.

    G.M. de Dormale, J.-J. Quisquater, J. Syst. Archit. 53, 72 (2007)

  16. 16.

    N. El Mrabet, J.J.A. Fournier, L. Goubin, R. Lashermes, Cryptogr. Commun. 7, 185 (2015)

  17. 17.

    A. Pantelopoulos, N.G. Bourbakis, IEEE Trans. Syst. Man Cybern. Part C (App. Rev.) 40, 1 (2010)

  18. 18.

    A. Ometov, P. Masek, L. Malina, R. Florea, J. Hosek, S. Andreev, J. Hajny, J. Niutanen, Y. Koucheryavy, Feasibility characterization of cryptographic primitives for constrained (wearable) iot devices, in 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops) (IEEE, 2016), pp. 1–6

  19. 19.

    H. Huff, Into the nano era: Moore’s law beyond planar silicon CMOS (Springer Science and Business Media, 2008), Vol. 106

  20. 20.

    R.S. Williams, Comput. Sci. Eng. 19, 7 (2017)

  21. 21.

    A.B. Kahng, IEEE Des. Test Comput. 27, 86 (2010)

  22. 22.

    O. Krestinskaya, A.P. James, L.O. Chua, Neuro-memristive circuits for edge computing: a review, in IEEE Transactions on Neural Networks and Learning Systems (IEEE, 2019), pp. 1–20

  23. 23.

    D.B. Strukov, G.S. Snider, D.R. Stewart, R. Stanley Williams, Nature 453, 80 (2008)

  24. 24.

    L. Chua, IEEE Trans. Circuit Theor. 18, 507 (1971)

  25. 25.

    S. Vongehr, X. Meng, Sci. Rep. 5, 11657 (2015)

  26. 26.

    I. Abraham, Sci. Rep. 8, 10972 (2018)

  27. 27.

    Y.N. Joglekar, S.J. Wolf, Eur. J. Phys. 30, 661 (2009)

  28. 28.

    Y. Ho, G.M. Huang, P. Li, IEEE Trans. Circuits Syst. I: Regul. Pap. 58, 724 (2011)

  29. 29.

    F. Corinto, M. Forti, IEEE Trans. Circuits Syst. I: Regul. Pap. 65, 1327 (2018)

  30. 30.

    L. Chua, Appl. Phys. A 124, 563 (2018)

  31. 31.

    P.J. Kuekes, D.R. Stewart, R.S. Williams, J. Appl. Phys. 97, 034301 (2005)

  32. 32.

    B. Mouttet, Proposal for memristor crossbar design and applications, in Memristors and Memristive Systems Symposium, UC Berkeley (2008)

  33. 33.

    B.L. Mouttet, Programmable Crossbar Signal Processor (November 27 2007), US Patent 7,302,513

  34. 34.

    P.O. Vontobel, W. Robinett, P.J. Kuekes, D.R. Stewart, J. Straznicky, R.S. Williams, Nanotechnology 20, 425204 (2009)

  35. 35.

    K.-H. Kim, S. Gaba, D. Wheeler, J.M. Cruz-Albrecht, T. Hussain, N. Srinivasa, W. Lu, Nano Lett. 12, 389 (2011)

  36. 36.

    X. Zhang, A. Huang, Q. Hu, Z. Xiao, P.K. Chu, Phys. Status Solidi A 215, 1700875 (2018)

  37. 37.

    O. Krestinskaya, K.N. Salama, A.P. James, Analog backpropagation learning circuits for memristive crossbar neural networks, in 2018 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, 2018), pp. 1–5

  38. 38.

    G.C. Adam, B.D. Hoskins, M. Prezioso, F. Merrikh-Bayat, B. Chakrabarti, D.B. Strukov, IEEE Trans. Electron Devices 64, 312 (2017)

  39. 39.

    W. Lu, K.-H. Kim, T. Chang, S. Gaba, Two-terminal resistive switches (memristors) for memory and logic applications, in Proceedings of the 16th Asia and South Pacific Design Automation Conference (IEEE Press, 2011), pp. 217–223

  40. 40.

    A. Irmanova, A.P. James, Analog Integr. Circuits Sign. Process. 95, 429 (2018)

  41. 41.

    S. Stathopoulos, A. Khiat, M. Trapatseli, S. Cortese, A. Serb, I. Valov, T. Prodromakis, Sci. Rep. 7, 17532 (2017)

  42. 42.

    C. Li, M. Hu, Y. Li, H. Jiang, N. Ge, E. Montgomery, J. Zhang, W. Song, N. Dávila, C.E. Graves, Z. Li, Nat. Electr. 1, 52 (2018)

  43. 43.

    O. Krestinskaya, A. Irmanova, A.P. James, Memristive non-idealities: is there any practical implications for designing neural network chips? in IEEE International Symposium on Circuits and Systems (IEEE, 2019), pp. 1–5

  44. 44.

    T. Eisenbarth, S. Kumar, C. Paar, A. Poschmann, L. Uhsadel, IEEE Des. Test Comput. 24, 522 (2007)

  45. 45.

    J. Daemen, V. Rijmen, The Design of Rijndael: AES-the Advanced Encryption Standard (Springer Science & Business Media, 2013)

  46. 46.

    D. Hankerson, A. Menezes, Elliptic Curve Cryptography (Springer, 2011)

  47. 47.

    D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B.-S. Koo, C. Lee, D. Chang, J. Lee, K. Jeong, H. Kim, Hight: a new block cipher suitable for low-resource device, in International Workshop on Cryptographic Hardware and Embedded Systems (Springer, Berlin, Heidelberg, 2006), pp. 46–59

  48. 48.

    T. Shirai, K. Shibutani, T. Akishita, S. Moriai, T. Iwata, The 128-bit blockcipher CLEFIA, in International Workshop on Fast Software Encryption (Springer, 2007), pp. 181–195

  49. 49.

    S. Panasenko, S. Smagin, Int. J. Comput. Theor. Eng. 3, 516 (2011)

  50. 50.

    S.R. Moosavi, T.N. Gia, A.-M. Rahmani, E. Nigussie, S. Virtanen, J. Isoaho, H. Tenhunen, Proc. Comput. Sci. 52, 452 (2015)

  51. 51.

    D. Engels, X. Fan, G. Gong, H. Hu, E.M. Smith, Hummingbird: ultra-lightweight cryptography for resource-constrained devices, in International Conference on Financial Cryptography and Data Security (Springer, 2010), pp. 3–18

  52. 52.

    A.Y. Poschmannm, Lightweight cryptography: cryptographic engineering for a pervasive world, Ph.D. thesis, Citeseer, 2009

  53. 53.

    L. Knudsen, G. Leander, A. Poschmann, M.J.B. Robshaw, Printcipher: a block cipher for ic-printing, in International Workshop on Cryptographic Hardware and Embedded Systems (Springer, 2010), pp. 16–32

  54. 54.

    C.H. Lim, T. Korkishko, mCrypton – a lightweight block cipher for security of low-cost RFID tags and sensors, in International Workshop on Information Security Applications (Springer, 2005), pp. 243–258

  55. 55.

    Z. Gong, S. Nikova, Y.W. Law, Klein: a new family of lightweight block ciphers, in International Workshop on Radio Frequency Identification: Security and Privacy Issues (Springer, 2011), pp. 1–18

  56. 56.

    S. Tomoyasu, Twine: a lightweight block cipher for multiple platforms, in Selected Areas in Cryptography (Springer Berlin Heidelberg, 2012), Vol. 7707

  57. 57.

    R. Beaulieu, S. Treatman-Clark, D. Shors, B. Weeks, J. Smith, L. Wingers, The simon and speck lightweight block ciphers, in 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC) (IEEE, 2015), pp. 1–6

  58. 58.

    J. Borghoff, A. Canteaut, T. Güneysu, E.B. Kavun, M. Knezevic, L.R. Knudsen, G. Leander, V. Nikov, C. Paar, C. Rechberger, P. Rombouts, PRINCE–A low-latency block cipher for pervasive computing applications, in International Conference on the Theory and Application of Cryptology and Information Security (Springer, 2012), pp. 208–225

  59. 59.

    M.R. Albrecht, B. Driessen, E.B. Kavun, G. Leander, C. Paar, T. Yalçn, Block ciphers – focus on the linear layer (feat. PRIDE), in International Cryptology Conference (Springer, 2014), pp. 57–76

  60. 60.

    W. Wu, L. Zhang, LBlock: a lightweight block cipher, in International Conference on Applied Cryptography and Network Security (Springer, 2011), pp. 327–344

  61. 61.

    M. Izadi, B. Sadeghiyan, S.S. Sadeghian, H.A. Khanooki, Mibs: a new lightweight block cipher, in International Conference on Cryptology and Network Security (Springer, 2009), pp. 334–348

  62. 62.

    H. Cheng, H.M. Heys, C. Wang, Puffin: a novel compact block cipher targeted to embedded digital systems, in 2008 11th EUROMICRO Conference on Digital System Design Architectures, Methods and Tools (IEEE, 2008), pp. 383–390

  63. 63.

    S. Tripathy, Int. J. Commun. Networks Distrib. Syst. 10, 176 (2013)

  64. 64.

    K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita, T. Shirai, Piccolo: an ultra-lightweight blockcipher, in International Workshop on Cryptographic Hardware and Embedded Systems (Springer, 2011), pp. 342–357

  65. 65.

    S. Kolay, D. Mukhopadhyay, Khudra: a new lightweight block cipher for FPGAs, in Int. Conf. Security Privacy Appl. Cryptogr. Eng. (Springer, 2014), pp. 126–145

  66. 66.

    R. Struik, AEAD Ciphers for Highly Constrained Networks (DIAC, 2013)

  67. 67.

    J. Balasch, B. Ege, T. Eisenbarth, B. Gérard, Z. Gong, T. Güneysu, S. Heyse, S. Kerckhof, F. Koeune, T. Plos, T. Pöppelmann, Compact implementation and performance evaluation of hash functions in attiny devices, in International Conference on Smart Card Research and Advanced Applications (Springer, 2012), pp. 158–172

  68. 68.

    B. Schneier, Cryptologia 24, 18 (2000)

  69. 69.

    B. Sun, Z. Liu, V. Rijmen, R. Li, L. Cheng, Q. Wang, H. Alkhzaimi, C. Li, Links among impossible differential, integral and zero correlation linear cryptanalysis, in Annual Cryptology Conference (Springer, 2015), pp. 95–115

  70. 70.

    D. Karaklajić, J.-M. Schmidt, I. Verbauwhede, IEEE Trans. Very Large Scale Integr. VLSI Syst. 21, 2295 (2013)

  71. 71.

    L.R. Knudsen, Truncated and higher order differentials, in International Workshop on Fast Software Encryption (Springer, 1994), pp. 196–211

  72. 72.

    J. Kim, S. Hong, J. Sung, S. Lee, J. Lim, S. Sung, Impossible differential cryptanalysis for block cipher structures, in International Conference on Cryptology in India (Springer, 2003), pp. 82–96

  73. 73.

    E. Biham, A. Biryukov, A. Shamir, Miss in the middle attacks on idea and khufu, in International Workshop on Fast Software Encryption (Springer, 1999), pp. 124–138

  74. 74.

    Q. Wang, Z. Liu, K. Varc, Y. Sasaki, V. Rijmen, Y. Todo, Cryptanalysis of reduced-round SIMON32 and SIMON48, in International Conference in Cryptology in India (Springer, 2014), pp. 143–160

  75. 75.

    C. Boura, M. Naya-Plasencia, V. Suder, Scrutinizing and improving impossible differential attacks: applications to CLEFIA, Camellia, LBlock and Simon, in International Conference on the Theory and Application of Cryptology and Information Security (Springer, 2014), pp. 179–199

  76. 76.

    H. Mala, M. Dakhilalian, M. Shakiba, J. Comput. Sci. Technol. 26, 744 (2011)

  77. 77.

    W.-L. Wu, W.-T. Zhang, D.-G. Feng, J. Comput. Sci. Technol. 22, 449 (2007)

  78. 78.

    H. Mala, M. Dakhilalian, V. Rijmen, M. Modarres-Hashemi, Improved impossible differential cryptanalysis of 7-round AES-128, in International Conference on Cryptology in India (Springer, 2010), pp. 282–291

  79. 79.

    F. Karakoç, H. Demirci, A.E. Harmanc, Impossible differential cryptanalysis of reduced-round lblock, in IFIP International Workshop on Information Security Theory and Practice (Springer, 2012), pp. 179–188

  80. 80.

    K. Nishimura, M. Sibuya, J. Cryptol. 2, 13 (1990)

  81. 81.

    L. Wei, C. Rechberger, J. Guo, H. Wu, H. Wang, S. Ling, Improved meet-in-the-middle cryptanalysis of KTANTAN (poster), in Australasian Conference on Information Security and Privacy (Springer, 2011), pp. 433–438

  82. 82.

    A. Bogdanov, D. Khovratovich, C. Rechberger, Biclique cryptanalysis of the full AES, in International Conference on the Theory and Application of Cryptology and Information Security (Springer, 2011), pp. 344–371

  83. 83.

    A. Canteaut, M. Naya-Plasencia, B. Vayssiere, Sieve-in-the-middle: improved mitm attacks, in Advances in Cryptology–CRYPTO 2013 (Springer, 2013), pp. 222–240

  84. 84.

    K. Jeong, H.C. Kang, C. Lee, J. Sung, S. Hong, Biclique cryptanalysis of lightweight block ciphers present, piccolo and led, IACR Cryptol. ePrint Arch. 2012, 621 (2012)

  85. 85.

    M.A. Abdelraheem, C. Blondeau, M. Naya-Plasencia, M. Videau, E. Zenner, Cryptanalysis of ARMADILLO2, in International Conference on the Theory and Application of Cryptology and Information Security (Springer, 2011), pp. 308–326

  86. 86.

    M. Naya-Plasencia, How to improve rebound attacks, in Annual Cryptology Conference (Springer, 2011), pp. 188–205

  87. 87.

    M. Naya-Plasencia, D. Toz, K. Varici, Rebound attack on JH42, in International Conference on the Theory and Application of Cryptology and Information Security (Springer, 2011), pp. 252–269

  88. 88.

    F. Mendel, C. Rechberger, M. Schläffer, S.S. Thomsen, The rebound attack: cryptanalysis of reduced whirlpool and grøstl, in International Workshop on Fast Software Encryption (Springer, 2009), pp. 260–276

  89. 89.

    V. Lallemand, M. Naya-Plasencia, Cryptanalysis of full sprout, in Annual Cryptology Conference (Springer, 2015), pp. 663–682

  90. 90.

    G. Leander, On linear hulls, statistical saturation attacks, present and a cryptanalysis of puffin, in Annual International Conference on the Theory and Applications of Cryptographic Techniques (Springer, 2011), pp. 303–322

  91. 91.

    B. Muthuswamy, Int. J. Bifurcation Chaos 20, 1335 (2010)

  92. 92.

    C. Zheng, H.H.C. Iu, T. Fernando, D. Yu, H. Guo, J.K. Eshraghian, Chaos: Interdisciplinary J. Nonlinear Sci. 28, 063115 (2018)

  93. 93.

    T. Yang, C.W. Wu, L.O. Chua, IEEE Trans. Circuits Syst. I: Fundam. Theor. App. 44, 469 (1997)

  94. 94.

    M.T. Arafin, C. Dunbar, G. Qu, N. McDonald, L. Yan, A survey on memristor modeling and security applications, in Sixteenth International Symposium on Quality Electronic Design (IEEE, 2015), pp. 440–447

  95. 95.

    B. Wang, F.C. Zou, J. Cheng, Optik 154, 538 (2018)

  96. 96.

    W.J. Miller, N.G. Trbovich, RSA Public-key Data Encryption System Having Large Random Prime Number Generating Microprocessor or the Like (September 28, 1982), yUS Patent 4,351,982

  97. 97.

    F. Corinto, V. Krulikovskyi, S.D. Haliuk, Memristor-based chaotic circuit for pseudo-random sequence generators, in 2016 18th Mediterranean Electrotechnical Conference (MELECON) (IEEE, 2016), pp. 1–3

  98. 98.

    R. Maes, Physically Unclonable Functions (Springer, 2016)

  99. 99.

    G. Edward Suh, S. Devadas, Physical unclonable functions for device authentication and secret key generation, in 2007 44th ACM/IEEE Design Automation Conference (IEEE, 2007), pp. 9–14

  100. 100.

    N. Beckmann, M. Potkonjak, Hardware-based public-key cryptography with public physically unclonable functions, in International Workshop on Information Hiding (Springer, 2009), pp. 206–220

  101. 101.

    R. Maes, I. Verbauwhede, Physically unclonable functions: a study on the state of the art and future research directions, in Towards Hardware-Intrinsic Security (Springer, 2010), pp. 3–37

  102. 102.

    J. Rajendran, G.S. Rose, R. Karri, M. Potkonjak, Nano-PPUF: a memristor-based security primitive, in 2012 IEEE Computer Society Annual Symposium on VLSI (IEEE, 2012), pp. 84–87

  103. 103.

    Y. Gao, D.C. Ranasinghe, S.F. Al-Sarawi, O. Kavehei, D. Abbott, IEEE Access 4, 61 (2016)

  104. 104.

    A. Mazady, M.T. Rahman, D. Forte, M. Anwar, IEEE J. Emerg. Sel. Top. Circuits Syst. 5, 222 (2015)

  105. 105.

    M.T. Arafin, G. Qu, IEEE Trans. Very Large Scale Integr. VLSI Syst. 99, 1 (2018)

  106. 106.

    M. Uddin, M.D. Majumder, K. Beckmann, H. Manem, Z. Alamgir, N.C. Cady, G.S. Rose, ACM J. Emerg. Technol. Comput. Syst. (JETC) 14, 2 (2018)

  107. 107.

    A. Maiti, P. Schaumont, J. Cryptol. 24, 375 (2011)

  108. 108.

    S. Tajik, E. Dietz, S. Frohmann, J.-P. Seifert, D. Nedospasov, C. Helfmeier, C. Boit, H. Dittrich, Physical characterization of arbiter PUFs, in International Workshop on Cryptographic Hardware and Embedded Systems (Springer, 2014), pp. 493–509

  109. 109.

    A. Garg, T.T. Kim, Design of sram puf with improved uniformity and reliability utilizing device aging effect, in 2014 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, 2014), pp. 1941–1944

  110. 110.

    R. Zhang, H. Jiang, Z.R. Wang, P. Lin, Y. Zhuo, D. Holcomb, D.H. Zhang, J.J. Yang, Q. Xia, Nanoscale 10, 2721 (2018)

  111. 111.

    H. Nili, G.C. Adam, B. Hoskins, M. Prezioso, J. Kim, M. Reza Mahmoodi, F.M. Bayat, O. Kavehei, D.B. Strukov, Nat. Electron. 1, 197 (2018)

  112. 112.

    Y. Gao, C. Jin, J. Kim, H. Nili, X. Xu, W. Burleson, O. Kavehei, M. van Dijk, D.C. Ranasinghe, U. Rührmair, Efficient erasable PUFs from programmable logic and memristors, IACR Cryptol. ePrint Arch. 2018, 358 (2018)

  113. 113.

    S. Kvatinsky, L. Azriel, Memristive Security Hash Function (November 1, 2018), US Patent App. 15/965,924

  114. 114.

    L. Azriel, S. Kvatinsky, Towards a memristive hardware secure hash function (memhash), in 2017 IEEE International Symposium on Hardware Oriented Security and Trust (HOST) (IEEE, 2017), pp. 51–55

Download references

Author information

Correspondence to Alex Pappachen James.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

James, A.P. An overview of memristive cryptography. Eur. Phys. J. Spec. Top. 228, 2301–2312 (2019).

Download citation