The European Physical Journal Special Topics

, Volume 228, Issue 10, pp 2287–2299 | Cite as

Analysis and electronic implementation of an absolute memristor autonomous Van der Pol-Duffing circuit

  • Karthikeyan Rajagopal
  • Justin Roger Mboupda Pone
  • Sifeu Takougang KingniEmail author
  • Sundaram Arun
  • Anitha Karthikeyan
Regular Article
Part of the following topical collections:
  1. Memristor-based Systems: Nonlinearity, Dynamics and Applications


In this paper, a memristor-based chaotic circuit is built by replacing the nonlinear resistor of a unified Van der Pol-Duffing circuit by an ideal and active flux-controlled memristor with an absolute value nonlinearity. The equilibrium points of the mathematical model describing the proposed absolute memristor Van der Pol-Duffing circuit are determined and their stabilities are analyzed thank to the Routh-Hurwitz criteria. The numerical simulations reveal that the proposed absolute memristor circuit exhibits reverse period-doubling to chaos, bistable one-scroll chaotic attractors, double-scroll chaotic attractor, bistable periodic attractors and antimonotonicity phenomenon. Moreover the proposed absolute memristor circuit is implemented in PSIM software package. The results found using the PSIM software package have a good qualitative agreement with those found during the numerical simulations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Matsumoto, IEEE Trans. Circuits Syst. 31, 1055 (1984)CrossRefGoogle Scholar
  2. 2.
    S. Strogatz, M. Friedman, A. John Mallin krodt, S.M. Kay, Comput. Phys. 8, 532 (1994)CrossRefGoogle Scholar
  3. 3.
    R.C. Hilborn, Chaos and Nonlinear Dynamics: An Introdution for Scientists and Engineers. Oxford scholarship online: Physics module (Oxford University Press, 2000)Google Scholar
  4. 4.
    C.G. Rong, D. Xiaoning, From chaos to order: methodologies, perspetives and appliations, in World scientific series on nonlinear science series A (World Scientific Publishing Company, 1998)Google Scholar
  5. 5.
    L. Teh-Lu, T. Shin-Hwa, Chaos Solitons Fractals 11, 1387 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    S. Bowong, Phys. Lett. A 326, 102 (2004)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    S.K. Han, C. Kurrer, Y. Kuramoto, Phys. Rev. Lett. 75, 3190 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    L.O. Chua, G.-N. Lin, IEEE Trans. Circuits Syst. 37, 885 (1990)CrossRefGoogle Scholar
  9. 9.
    M. Shinriki, M. Yamamoto, S. Mori, Proc. IEEE 69, 394 (1981)CrossRefGoogle Scholar
  10. 10.
    G.P. King, S.T. Gaito, Phys. Rev. A 46, 3092 (1992)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    F.M. Moukam Kakmeni, S. Bowong, C.T. Hawoua, E. Kaptouom, J. Sound Vibr. 277, 783 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    A.A. Cherevko, A.V. Mikhaylova, A.P. Chupakhin, I.V. Umtseva, A.L. Krivoshapkin, K.Y. Orlov, J. Phys. Conf. Ser. 722, 012045 (2016)CrossRefGoogle Scholar
  13. 13.
    H. Fotsin, S. Bowong, J. Daafouz, Chaos Solitons Fractals 26, 215 (2005)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    H.B. Fotsin, P. Woafo, Chaos Solitons Fractals 24, 1363 (2005)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    G.J. Fodjouong, H.B. Fotsin, P. Woafo, Phys. Scr. 75, 638 (2007)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    A.E. Matouk, H.N. Agiza, J. Math. Anal. Appl. 341, 259 (2008)MathSciNetCrossRefGoogle Scholar
  17. 17.
    L. Chua, I.E.E.E. Trans, Circuit Theor. 18, 507 (1971)CrossRefGoogle Scholar
  18. 18.
    D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453, 80 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    C. Yakopi, T.M. Taha, G. Subramanyam, R.E. Pino, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32, 1201 (2013)CrossRefGoogle Scholar
  20. 20.
    C. Wang, G. Liu, Y. Chen, R.-W. Li, W. Zhang, L. Wang, B. Zhang, J. Mater. Chem. C 3, 664 (2015)CrossRefGoogle Scholar
  21. 21.
    B.-C. Bao, J.-P. Xu, Z. Liu, Chin. Phys. Lett. 27, 070504 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    V.A. Botta, C. Nespoli, M. Messias, Tend. Mat. Apl. Comput. 12, 9199 (2011)Google Scholar
  23. 23.
    V.A. Slipko, Y.V. Pershin, M. Di Ventra, Phys. Rev. E 87, 042103 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    L. Teng, H.H.C. Iu, X. Wang, X. Wang, Nonlinear Dyn. 77, 231 (2014)CrossRefGoogle Scholar
  25. 25.
    S. Sabarathinam, C.K. Volos, K. Thamilmaran, Nonlinear Dyn. 87, 37 (2017)CrossRefGoogle Scholar
  26. 26.
    Y. Lu, X. Huang, S. He, D. Wang, B. Zhang, Nonlinear Dyn. 24, 1450154 (2014)Google Scholar
  27. 27.
    A.A. Zakhidov, J. Byungki, J.D. Slinker, H.D. Abruna, G.G. Malliaras, Org. Electron. 11, 150 (2010)CrossRefGoogle Scholar
  28. 28.
    G. Martinsen, S. Grimnes, C.A. Lütken, G.K. Johnsen, J. Phys. Conf. Ser. 224, 012071 (2010)CrossRefGoogle Scholar
  29. 29.
    I. Valov, E. Linn, S. Tappertzhofen, S. Schmelzer, J. van den Hurk, F. Lentz, R. Waser, Nat. Commun. 4, 1771 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    O. Sporns, G. Tononi, R. Kötter, PLoS Comput. Biology 1, 0245 (2005)CrossRefGoogle Scholar
  31. 31.
    A.M.A. El-Sayed, A. Elsaid, H.M. Nour, A. Elsonbaty, Commun. Nonlinear Sci. Numer. Simul. 18, 148 (2013)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    N. Bao, H. Wang, B.C. Bao, M. Chen, P. Jin, G. Wang, Commun. Nonlinear Sci. Numer. Simul. 57, 264 (2018)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    W.T. Vetterling, S.A. Teukolsky, W.H. Press, Numerical Recipes: Example Book (FORTRAN), 2nd edn. (Cambridge University Press, 1992)Google Scholar
  34. 34.
    A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Physica D 16, 285 (1985)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    J. Kengne, A.N. Negou, D. Tchiotsop, Nonlinear Dyn. 88, 2589 (2017)CrossRefGoogle Scholar
  36. 36.
    B. Blazejczyk-Okolewska, T. Kapitaniak, Chaos Solitons Fractals 9, 1439 (1998)ADSCrossRefGoogle Scholar
  37. 37.
    A. Chudzik, P. Perlikowski, A. Stefanski, T. Kapitaniak, Int. J. Bifurc. Chaos 21, 1907 (2011)CrossRefGoogle Scholar
  38. 38.
    S.P. Dawson, C. Grebogi, J.A. Yorke, I. Kan, H. Koǫak, Phys. Lett. A 162, 249 (1992)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    H. Wu, B. Bao, Z. Liu, Q. Xu, P. Jiang, Nonlinear Dyn. 8, 893 (2016)CrossRefGoogle Scholar
  40. 40.
    M. Bier, T.C. Phys. Lett. A 104, 239 (1984)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Karthikeyan Rajagopal
    • 1
    • 2
  • Justin Roger Mboupda Pone
    • 3
  • Sifeu Takougang Kingni
    • 4
    Email author
  • Sundaram Arun
    • 5
  • Anitha Karthikeyan
    • 1
  1. 1.Center for Non-Linear Dynamics, Defence UniversityBishoftuEthiopia
  2. 2.Institute of Energy, Mekelle UniversityMekelleEthiopia
  3. 3.Research Unit of Automation and Applied Computer (RU-AIA), Electrical Engineering Department of IUT-FV, University of DschangBandjounCameroon
  4. 4.Department of MechanicalPetroleum and Gas Engineering, Faculty of Mines and Petroleum Industries, University of MarouaMarouaCameroon
  5. 5.Electronics Engineering, Prathyusha Engineering CollegeChennaiIndia

Personalised recommendations