Advertisement

The European Physical Journal Special Topics

, Volume 228, Issue 10, pp 2247–2268 | Cite as

Fast disturbance-observer-based robust integral terminal sliding mode control of a hyperchaotic memristor oscillator

  • Amin YousefpourEmail author
  • Hadi JahanshahiEmail author
Regular Article
  • 5 Downloads
Part of the following topical collections:
  1. Memristor-based Systems: Nonlinearity, Dynamics and Applications

Abstract

This paper is concerned with the stabilization and tracking control of a hyperchaotic memristor oscillator using a novel disturbance-observer-based integral terminal sliding mode control. Firstly, the dynamic behaviours of the hyperchaotic memristor oscillator are investigated. Afterward, the fast disturbance-observer is combined with integral terminal sliding mode control for multi-input-multi-output (MIMO) nonlinear relative degree one systems in presences of external disturbance, unknown input saturation, and control singularity. The Lyapunov stability theorem is implemented to prove the finite time convergence of the closed-loop system. Furthermore, to specify the parameters of the proposed controller, the genetic algorithm optimization is applied to decrease chattering of the system’s response. Simulation results are presented to show the appropriate performance of the proposed control scheme in terms of stabilization and tracking control in the presence of external disturbances and input saturation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. Wei, V.T. Pham, T. Kapitaniak, Z. Wang, Nonlinear Dyn. 85, 1635 (2016)CrossRefGoogle Scholar
  2. 2.
    Z. Wei, P. Yu, W. Zhang, M. Yao, Nonlinear Dyn. 82, 131 (2015)CrossRefGoogle Scholar
  3. 3.
    D. Levy, Strategic Manage. J. 15, 167 (1994)ADSCrossRefGoogle Scholar
  4. 4.
    O.E. Rossler, Phys. Lett. A 71, 155 (1979)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Z. Wei, W. Wang Int. J. Bifurc. Chaos 24, 1450127 (2014)CrossRefGoogle Scholar
  6. 6.
    Y. Feng, et al., Complexity 2017 (2017)Google Scholar
  7. 7.
    G. Kai, W. Zhang, Z.C. Wei, J.F. Wang, A. Akgul, Math. Prob. Eng. 2017, 2490580 (2017)CrossRefGoogle Scholar
  8. 8.
    Z. Wei, R. Wang, A. Liu, Math. Comput. Simul. 100, 13 (2014)CrossRefGoogle Scholar
  9. 9.
    C.G. Rong, D. Xiaoning, From Chaos to Order: Methodologies, Perspectives and Applications (World Scientific, 1998)Google Scholar
  10. 10.
    A. Chen, J. Lu, J. Lü, S. Yu, Physica. A 364, 103 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    S. Nikolov, S. Clodong, Chaos Solitons Fractals 22, 407 (2004)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    S. Duan, X. Hu, Z. Dong, L. Wang, P. Mazumder, IEEE Trans. Neural Networks Learn. Syst. 26, 1202 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    S.S. Sarwar, S.A.N. Saqueb, F. Quaiyum, A.H.U. Rashid, IEEE Access 1, 29 (2013)CrossRefGoogle Scholar
  14. 14.
    R. Rakkiyappan, R. Sivasamy, X. Li, Circuits Syst. Signal Process. 34, 763 (2015)CrossRefGoogle Scholar
  15. 15.
    T. Driscoll, Y.V. Pershin, D.N. Basov, M. Di Ventra, Appl. Phys. A 102, 885 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    K. Rajagopal, A. Karthikeyan, A. Srinivasan, Chaos Solitons Fractals 103, 347 (2017)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Z. Wang, F. Min, E. Wang, AIP Adv. 6, 095316 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    G. Wang, et al., Math. Prob. Eng. 2017 (2017)Google Scholar
  19. 19.
    J. Zhang, X. Liao, AEU Int. J. Electron. Commun. 75, 82 (2017)CrossRefGoogle Scholar
  20. 20.
    Z. Wang, W. Sun, Z. Wei, S. Zhang, Nonlinear Dyn. 82, 577 (2015)CrossRefGoogle Scholar
  21. 21.
    Z. Wei, Comput. Math. Appl. 63, 728 (2012)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Y. Feng, Z. Wei, Eur. Phys. J. Special Topics 224, 1619 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    H. Jahanshahi, M. Jafarzadeh, N.N. Sari, V.T. Pham, V.V. Huynh, X.Q. Nguyen, Electronics 8, 201 (2019)CrossRefGoogle Scholar
  24. 24.
    K. Rajagopal, H. Jahanshahi, M. Varan, I. Bayir, V.T. Pham, S. Jafari, A. Karthikeyan, A.E.U. Int, AEU Int. J. Electron. Commun. 94, 55 (2018)CrossRefGoogle Scholar
  25. 25.
    M.J. Mahmoodabadi, H. Jahanshahi, Eng. Sci. Technol. Int. J. 19, 1084 (2016)CrossRefGoogle Scholar
  26. 26.
    A. Kosari, H. Jahanshahi, S.A. Razavi, Eng. Sci. Technol. Int. J. 20, 293 (2017)CrossRefGoogle Scholar
  27. 27.
    A. Kosari, H. Jahanshahi, S.A. Razavi, J. Aerosp. Eng. 30, 04017011 (2017)CrossRefGoogle Scholar
  28. 28.
    N.N. Sari, H. Jahanshahi, M. Fakoor, Int. J. Fuzzy Syst. 21, 769 (2019)MathSciNetCrossRefGoogle Scholar
  29. 29.
    H. Jahanshahi, N.N. Sari, V.T. Pham, F.E. Alsaadi, T. Hayat, Int. J. Adv. Rob. Syst. 15, 1729881418782097 (2018)Google Scholar
  30. 30.
    H. Jahanshahi, K. Rajagopal, A. Akgul, N.N. Sari, H. Namazi, S. Jafari, Int. J. Non-Linear Mech. 107, 126 (2018)ADSCrossRefGoogle Scholar
  31. 31.
    H. Jahanshahi, M. Shahriari-Kahkeshi, R. Alcaraz, X. Wang, V.P. Singh, V.T. Pham, Entropy 21, 156 (2019)ADSCrossRefGoogle Scholar
  32. 32.
    H. Jahanshahi, Eur. Phys. J. Special Topics 227, 707 (2018)ADSCrossRefGoogle Scholar
  33. 33.
    J.S.-H. Tsai, J.S. Fang, J.J. Yan, M.C. Dai, S.M. Guo, L.S. Shieh, Nonlinear Anal.: Hybrid Syst. 29, 74 (2018)MathSciNetGoogle Scholar
  34. 34.
    X.-Y. Lu, S.K. Spurgeon, Syst. Control Lett. 32, 75 (1997)CrossRefGoogle Scholar
  35. 35.
    Y. Niu, D.W.C. Ho, IEE Proc.-Control Theory Appl. 153, 737 (2006)MathSciNetCrossRefGoogle Scholar
  36. 36.
    M. Shahzad, V.T. Pham, M.A. Ahmad, S. Jafari, F. Hadaeghi, Eur. Phys. J. Special Topics 224, 1637 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    S. Mobayen, Nonlinear Dyn. 92, 1539 (2018)CrossRefGoogle Scholar
  38. 38.
    S. Mobayen, ISA Trans. 77, 100 (2018)CrossRefGoogle Scholar
  39. 39.
    M. Rubagotti, D.M. Raimondo, A. Ferrara, L. Magni, IEEE Trans. Autom. Control 56, 556 (2011)CrossRefGoogle Scholar
  40. 40.
    S. Laghrouche, F. Plestan, A. Glumineau, Automatica 43, 531 (2007)CrossRefGoogle Scholar
  41. 41.
    A. Chihi, H.B. Azza, M. Jemli, A. Sellami, ISA Trans. 70, 475 (2017)CrossRefGoogle Scholar
  42. 42.
    A. Rajaei, A. Vahidi-Moghaddam, M. Ayati, M. Baghani, Microsyst. Technol. 25, 57 (2019)CrossRefGoogle Scholar
  43. 43.
    S. Tong, H.-X. Li, IEEE Trans. Fuzzy Syst. 11, 354 (2003)CrossRefGoogle Scholar
  44. 44.
    W.M. Bessa, A.S. De Paula, M.A. Savi, Eur. Phys. J. Special Topics 222, 1541 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    L. Zuo, R. Cui, W. Yan, Trans. Inst. Meas. Control 39, 1081 (2017)CrossRefGoogle Scholar
  46. 46.
    M. Zhihong, A.P. Paplinski, H.R. Wu, IEEE Trans. Autom. Control 39, 2464 (1994)CrossRefGoogle Scholar
  47. 47.
    S. Mobayen, F. Tchier, Sci. Iran. 24, 1410 (2017)Google Scholar
  48. 48.
    K. Euntai, IEEE Trans. Fuzzy Syst. 10, 77 (2002)CrossRefGoogle Scholar
  49. 49.
    Y. Lu, IEEE Trans. Ind. Electron. 56, 3743 (2009)CrossRefGoogle Scholar
  50. 50.
    M. Chen, W.H. Chen, Int. J. Adapt. Control Signal Process. 24, 51 (2010)MathSciNetGoogle Scholar
  51. 51.
    M. Chen, Q.-X. Wu, R.-X. Cui, ISA Trans. 52, 198 (2013)CrossRefGoogle Scholar
  52. 52.
    A. Vahidi-Moghaddam, A. Rajaei, M. Ayati, Appl. Math. Modell. 70, 109 (2019)CrossRefGoogle Scholar
  53. 53.
    O. Mofid, S. Mobayen, M.H. Khooban, Int. J. Adapt. Control Signal Process. 33, 462 (2019)Google Scholar
  54. 54.
    C.-S. Chiu, Automatica 48, 316 (2012)CrossRefGoogle Scholar
  55. 55.
    X. Chen, J.H. Park, J. Cao, J. Qiu, Appl. Math. Comput. 308, 161 (2017)MathSciNetGoogle Scholar
  56. 56.
    M. Zhihong, X.H. Yu, IEEE Trans. Circuits Syst. I: Fundam. Theory App. 44, 1065 (1997)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mechanical Engineering, College of Engineering, University of TehranTehranIran
  2. 2.Department of Aerospace EngineeringFaculty of New Sciences and Technologies, University of TehranTehranIran

Personalised recommendations