The European Physical Journal Special Topics

, Volume 228, Issue 10, pp 2233–2245 | Cite as

A new chaotic oscillator containing generalised memristor, single op-amp and RLC with chaos suppression and an application for the random number generation

  • Jay Prakash SinghEmail author
  • Jit Koley
  • Akif Akgul
  • Bilal Gurevin
  • Binoy Krishna Roy
Regular Article
Part of the following topical collections:
  1. Memristor-based Systems: Nonlinearity, Dynamics and Applications


In this paper, a new chaotic oscillator consists of a single op-amp, two capacitors, one resistor, one inductor, and memristive diode bridge cascaded with an inductor is proposed. The proposed chaotic oscillator has a line of equilibria. In the new oscillator circuit, negative feedback, i.e. inverting terminal of the op-amp is used, and the non-inverting terminal is grounded. The new oscillator has chaotic, periodic, quasi-periodic behaviours, as seen from the Lyapunov spectrum plots. Some more theoretical and numerical tools are used to present the dynamical behaviours of the new oscillator like bifurcation diagram, phase plot. Further, a non-singular terminal sliding mode control (N-TSMC) is designed for the suppression of the chaotic states of the new oscillator. An application of the new oscillator is shown by designing a chaos-based random number generator. Raspberry Pi 3 is used for the realisation of the random number generator.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Di Ventra, Y.V. Pershin, L.O. Chua, Proc. IEEE 97, 1717 (2009)CrossRefGoogle Scholar
  2. 2.
    A.L. Fitch, H.H.C. Lu, D.S. Yu, Chaos in a memcapacitor based circuit, in 2014 IEEE Int. Symp. Circuits Syst. (Melbourne VIC, Australia, 2014), pp. 482–485Google Scholar
  3. 3.
    L.O. Chua, IEEE Trans. Circuit Theory. 18, 507 (1971)CrossRefGoogle Scholar
  4. 4.
    D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453, 80 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    M. Itoh, L.O. Chua, Int. J. Bifurc. Chaos. 18, 3183 (2008)CrossRefGoogle Scholar
  6. 6.
    F.Y. Recai Kilic, Chaos Solitons Fractals 38, 1394 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    A. Bussarino, L. Fortuna, M. Franca, L.V. Gambuzza, Int. J. Bifurc. Chaos. 23, 1330015 (2013)CrossRefGoogle Scholar
  8. 8.
    A.L. Fitch, D. Yu, H.H.C. Iu, V. Sreeram, Int. J. Bifurc. Chaos. 22, 1250133 (2012)CrossRefGoogle Scholar
  9. 9.
    A. Buscarino, L. Fortuna, M. Frasca, L. Valentina Gambuzza, Chaos 22, 023136 (2012)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    F. Corinto, A. Ascoli, M. Gilli, IEEE Trans. Circuits Syst. I Regul. Pap. 58, 1323 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    B. Bao, Z. Ma, J. Xu, Z. Liu, Q. Xu, Int. J. Bifurc. Chaos. 21, 2629 (2011)CrossRefGoogle Scholar
  12. 12.
    M. Itoh, L.O. Chua, Int. J. Bifurc. Chaos. 18, 3183 (2008)CrossRefGoogle Scholar
  13. 13.
    B.C. Bao, J.P. Xu, G.H. Zhou, Z.H. Ma, L. Zou, Chin. Phys. B. 20, 120502 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    X. Han, H. Wu, B. Fang, Neurocomputing. 201, 40 (2016)CrossRefGoogle Scholar
  15. 15.
    J.C. Sprott, Int. J. Bifurc. Chaos. 21, 2391 (2011)CrossRefGoogle Scholar
  16. 16.
    T. Banerjee, B. Karmakar, B.C. Sarkar, Nonlinear Dyn. 62, 859 (2010)CrossRefGoogle Scholar
  17. 17.
    T. Banerjee, B. Karmakar, B.C. Sarkar, AEU - Int. J. Electron. Commun. 66, 593 (2012)CrossRefGoogle Scholar
  18. 18.
    B. Bao, T. Jiang, Q. Xu, M. Chen, H. Wu, Y. Hu, Nonlinear Dyn. 86, 1711 (2016)CrossRefGoogle Scholar
  19. 19.
    T. Banerjee, B. Karmakar, D. Biswas, B.C. Sarkar, A simple inductor-free autonomous chaotic circuit, in MDCCT-2012 (Burdwan University, India, 2012)Google Scholar
  20. 20.
    X.-S. Yang, Q. Li, Electron. Lett. 38, 623 (2002)CrossRefGoogle Scholar
  21. 21.
    H. Bao, N. Wang, H. Wu, Z. Song, B. Bao, IETE Tech. Rev. 36, 109 (2018)CrossRefGoogle Scholar
  22. 22.
    X. Ye, J. Mou, C. Luo, Z. Wang, Nonlinear Dyn. 92, 923 (2018)CrossRefGoogle Scholar
  23. 23.
    H. Wu, B. Bao, Z. Liu, Q. Xu, P. Jiang, Nonlinear Dyn. 83, 893 (2015)CrossRefGoogle Scholar
  24. 24.
    N. Wang, B. Bao, T. Jiang, M. Chen, Q. Xu, Math. Prob. Eng. 2017, 29 (2017)Google Scholar
  25. 25.
    M. Taher, Z.J. Khalifa, Int. J. Electr. Eng. Educ. 53, 280 (2016)CrossRefGoogle Scholar
  26. 26.
    W. San-Um, B. Suksiri, P. Ketthong, Int. J. Bifurc. Chaos. 24, 1450155 (2014)CrossRefGoogle Scholar
  27. 27.
    J. Kengne, N. Tsafack, L.K. Kengne, Int. J. Dyn. Control. 6, 1543 (2018)MathSciNetCrossRefGoogle Scholar
  28. 28.
    B.C. Bao, P.Y. Wu, H. Bao, H.G. Wu, X. Zhang, M. Chen, Chaos Solitons Fractals 109, 146 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    A.S. Elwakil, M.P. Kenned, J. Franklin Inst. 336, 687 (1999)CrossRefGoogle Scholar
  30. 30.
    T. Banerjee, Nonlinear Dyn. 68, 565 (2012)CrossRefGoogle Scholar
  31. 31.
    Q. Xu, Q. Zhang, T. Jiang, B. Bao, M. Chen, Circuit World. 44, 108 (2018)CrossRefGoogle Scholar
  32. 32.
    S. Çiçek, A. Feriko, I. Pehlivan, Optik (Stuttg). 127, 4024 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    J.P. Singh, K. Lochan, N.V. Kuznetsov, B.K. Roy, Nonlinear Dyn. 90, 1277 (2017)CrossRefGoogle Scholar
  34. 34.
    J.P. Singh, B.K. Roy, Nonlinear Dyn. 93, 1121 (2018)CrossRefGoogle Scholar
  35. 35.
    J. Angulo, E. Kussenar, H. Barthelemy, B. Duval, A new oscillator-based RNG, in IEEE Faibl. Tens. Faibl. Cons. (2012), pp. 1–4Google Scholar
  36. 36.
    S. Ergün, S. Özoğuz, Int. J. Electron. Commun. 61, 235 (2007)CrossRefGoogle Scholar
  37. 37.
    Q. Li, Q. Liu, J. Niu, Chaotic oscillator with potentials in TRNG and ADC, in 35th Int. Conf. Telecomm. Signal Proc. (2012), pp. 397–400Google Scholar
  38. 38.
    I. Cicek, A. Pusane, G. Dundar, Integr. VLSI J. 47, 38 (2014)CrossRefGoogle Scholar
  39. 39.
    F. Pareschi, G. Setti, R. Rovatti, IEEE Trans. Circuits Syst. 57, 3124 (2010)CrossRefGoogle Scholar
  40. 40.
    P. Wieczorek, K. Golofit, IEEE Trans. Circuits Syst. 61, 134 (2014)CrossRefGoogle Scholar
  41. 41.
    V. Fischer, M. Drutavosky, M. Simka, N. Bochard, High performance TRNG in sltera stratix FPLDs, in F. Program. Log. App. (2004), pp. 555–564Google Scholar
  42. 42.
    H. Istvan, A. Suciu, O. Cret, FPGA based TRNG using automatic calibratio, in Intell. Comp. Comm. Proc. IEEE 5th Int. Conf. ICCP (2009), pp. 373–376Google Scholar
  43. 43.
    C. Hu, J. Yu, Chaos Solitons Fractals 91, 262 (2016)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    J.P. Singh, B.K. Roy, Trans. Inst. Meas. Control 40, 3573 (2017)CrossRefGoogle Scholar
  45. 45.
    H. Yu, J. Wang, B. Deng, X. Wei, Y. Che, Y.K. Wong, W.L. Chan, K.M. Tsang, Commun. Nonlinear Sci. Numer. Simul. 17, 1344 (2012)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    J.P. Singh, B.K. Roy, Nonlinear Dyn. 92, 23 (2018)CrossRefGoogle Scholar
  47. 47.
    F. Corinto, A. Ascoli, Electron. Lett. 48, 824 (2012)CrossRefGoogle Scholar
  48. 48.
    B. Bao, J. Yu, F. Hu, Z. Liu, Int. J. Bifurc. Chaos. 24, 1450143 (2014)CrossRefGoogle Scholar
  49. 49.
    A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Physica D 16, 285 (1985)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    Y. Feng, X. Yu, F. Han, Automatica 49, 1715 (2013)CrossRefGoogle Scholar
  51. 51.
    E. Avaroglu, M. Turk, RNG using multi-mode chaotic attractor, in IEEE Signal Process. Comm. Appl. Conf. (2013)Google Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jay Prakash Singh
    • 1
    • 3
    Email author
  • Jit Koley
    • 3
  • Akif Akgul
    • 2
  • Bilal Gurevin
    • 2
  • Binoy Krishna Roy
    • 3
  1. 1.Department of Electrical EngineeringRewa Engineering CollegeRewaIndia
  2. 2.Department of Electrical and Electronic EngineeringFaculty of Technology, Sakarya University of Applied SciencesSerdivanTurkey
  3. 3.Department of Electrical EngineeringNational Institute of Technology SilcharSilcharIndia

Personalised recommendations