The European Physical Journal Special Topics

, Volume 228, Issue 10, pp 2215–2231 | Cite as

Use of memristive chaotic signal as a desired trajectory for a two-link flexible manipulator using contraction theory based on a composite control technique

  • Kshetrimayum LochanEmail author
  • Binoy Krishna Roy
  • Bidyadhar Subudhi
Regular Article
Part of the following topical collections:
  1. Memristor-based Systems: Nonlinearity, Dynamics and Applications


Flexible manipulators are being considered as bench mark control problem in the field of nonlinear dynamics. Many of their inherent advantages create challenges while dealing with the dynamics. Tracking control and vibration suppression are two main control problems considered. In this paper a composite controller is designed for the memristive chaotic system signal as trajectory tracking control of a two-link flexible robot manipulator. The dynamics of the flexible manipulator is modelled by using assumed modes method and divided into two subsystems using the singular perturbation technique. The subsystems are called as the slow subsystem involving rigid dynamics of the manipulator and the fast sub-system which incorporates flexible dynamics of the manipulator. Separate control techniques are designed for each subsystem. Contraction theory based controllers are designed for the slow sub-system and fast subsystem for fast trajectory tracking of signal of a memristive chaotic system and quick suppression of the link deflections. The simulation results confirm the better performances of the proposed composite technique.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Lochan, B.K. Roy, B. Subudhi, Annu. Rev. Control. 42, 346 (2016)CrossRefGoogle Scholar
  2. 2.
    Y. Yu, Y. Yuan, X. Fan, H. Yang, Adv. Space Res. 56, 2312 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    K. Lochan, B.K. Roy, B. Subudhi, IFAC-PapersOnLine 49, 219 (2016)CrossRefGoogle Scholar
  4. 4.
    K. Lochan, B.K. Roy, B. Subudhi, Rob. Auton. Syst. 97, 108 (2017)CrossRefGoogle Scholar
  5. 5.
    M. Sayahkarajy, Z. Mohamed, A.A.M. Faudzi, Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 230, 1 (2016)CrossRefGoogle Scholar
  6. 6.
    M. Sayahkarajy, Z. Mohamed, A.A.M. Faudzi, E. Supriyanto, Eng. Comput. 33, 395 (2016)CrossRefGoogle Scholar
  7. 7.
    A.R. Maouche, H. Meddahi, Int. J. Adv. Comput. Sci. Appl. 7, 298 (2016)Google Scholar
  8. 8.
    K. Lochan, R. Dey, B.K. Roy, B. Subudhi, Tracking control with Vibration suppression of a two-link flexible manipulator using singular perturbation with composite control design, in Soft Comput. Appl. SOFA 2016. Adv. Intell. Syst. Comput, edited by V. Balas, L. Jain, M. Balas (Springer, Berlin Heidelberg, 2018), pp. 365–377Google Scholar
  9. 9.
    W.S. Lohmiller, Contraction Analysis of Nonlinear Systems (1999)Google Scholar
  10. 10.
    J. Jouffroy, J.-J.E. Slotine, Methodological remarks on contraction theory, in: 2004 43rd IEEE Conf. Decis. Control IEEE Cat. No.04CH37601 (2004), pp. 2537–2543Google Scholar
  11. 11.
    J.P. Singh, B.K. Roy, Nonlinear Dyn. 92, 373 (2018)CrossRefGoogle Scholar
  12. 12.
    K. Lochan, J.P. Singh, B.K. Roy, Hidden chaotic path planning and control of a flexible robot manipulator, in Nonlinear Dyn. Syst. with Self-Excited Hidden Attractors, edited by S. Vaidyanathan, V.-T. Pham (Springer, India, 2018), pp. 433–463Google Scholar
  13. 13.
    K. Lochan, B.K. Roy, B. Subudhi, IFAC-PapersOnLine 49, 219 (2016)CrossRefGoogle Scholar
  14. 14.
    K. Lochan, B.K. Roy, B. Subudhi, Trans. Inst. Meas. Control. 40, 1 (2016)Google Scholar
  15. 15.
    V.-T. Pham, S. Vaidyanathan, C.K. Volos, S. Jafari, Eur. Phys. J. Special Topics 224, 507 (2015)CrossRefGoogle Scholar
  16. 16.
    V.-T. Pham, S. Jafari, C. Volos, T. Kapitaniak, Int. J. Bifurc. Chaos. 27, 1750138 (2017)CrossRefGoogle Scholar
  17. 17.
    E. Tlelo-Cuautle, L.G. de la Fraga, V.-T. Pham, C. Volos, S. Jafari, A. de J. Quintas-Valles, Nonlinear Dyn. 89, 1 (2017)CrossRefGoogle Scholar
  18. 18.
    V.T. Pham, S. Vaidyanathan, C. Volos, S. Jafari, S.T. Kingni, Optik 127, 3259 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    S. Vaidyanathan, V.-T. Pham, C.K. Volos, Eur. Phys. J. Special Topics 224, 1575 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    C. Volos, A. Akgul, V.T. Pham, I. Stouboulos, I. Kyprianidis, Nonlinear Dyn. 89, 1 (2017)CrossRefGoogle Scholar
  21. 21.
    V.T. Pham, C. Volos, L. Valentina Gambuzza, Sci. World J. 2014, 1 (2014)Google Scholar
  22. 22.
    V.T. Pham, C. Volos, S. Jafari, X. Wang, Optoelectron. Adv. Mater. Rapid Commun. 8, 535 (2014)Google Scholar
  23. 23.
    J.P. Singh, B.K. Roy, Nonlinear Dyn. 92, 23 (2018)CrossRefGoogle Scholar
  24. 24.
    J.P. Singh, B.K. Roy, Nonlinear Dyn. 89, 1845 (2017)CrossRefGoogle Scholar
  25. 25.
    S. Vaidyanathan, A. Sambas, M. Mamat, W.S. Mada Sanjaya, Arch. Control Sci. 27, 541 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    S. Vaidyanathand, A. Sambas, M. Mamat, Arch. Control Sci. 28, 443 (2018)Google Scholar
  27. 27.
    A. Sambas, S. Vaidyanathan, M. Mamat, M.A. Mohamed, S.M. Sanjaya, Int. J. Electr. Comput. Eng. 8, 4951 (2018)Google Scholar
  28. 28.
    S. Mobayen, S. Vaidyanathan, A. Sambas, S. Kaçar, U. Çavusoglu, Iran J. Sci. Technol. Trans. Electr. Eng. 43, 1 (2018)CrossRefGoogle Scholar
  29. 29.
    A. Bussarino, L. Fortuna, M. Franca, L.V. Gambuzza, Int. J. Bifurc. Chaos. 23, 1330015 (2013)CrossRefGoogle Scholar
  30. 30.
    A.L. Fitch, D. Yu, H.H.C. Iu, V. Sreeram, Int. J. Bifurc. Chaos. 22, 1250133 (2012)CrossRefGoogle Scholar
  31. 31.
    A. Buscarino, L. Fortuna, M. Frasca, L. Valentina Gambuzza, Chaos 22, 023136 (2012)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    F. Corinto, A. Ascoli, M. Gilli, IEEE Trans. Circuits Syst. I Regul. Pap. 58, 1323 (2011)MathSciNetCrossRefGoogle Scholar
  33. 33.
    B. Bao, Z. Ma, J. Xu, Z. Liu, Q. Xu, Int. J. Bifurc. Chaos. 21, 2629 (2011)CrossRefGoogle Scholar
  34. 34.
    M. Itoh, L.O. Chua, Int. J. Bifurc. Chaos. 18, 3183 (2008)CrossRefGoogle Scholar
  35. 35.
    B.C. Bao, J.P. Xu, G.H. Zhou, Z.H. Ma, L. Zou, Chin. Phys. B. 20, 120502 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    X. Xi, S. Mobayen, H. Ren, S. Jafari, J. Vib. Control. 24, 3842 (2018)MathSciNetCrossRefGoogle Scholar
  37. 37.
    O. Mofid, S. Mobayen, J. Vib. Control. 24, 4971 (2017)Google Scholar
  38. 38.
    S. Mobayen, F. Tchier, Asian J. Control. 20, 1 (2017)Google Scholar
  39. 39.
    K. Lochan, J.P. Singh, B.K. Roy, B. Subudhi, Chaotic path planning for a two-link flexible robot manipulator using a composite control technique, in , Recent Adv. Chaotic Syst. Synchronization (Elsevier, 2019) pp. 233–257Google Scholar
  40. 40.
    W. Lohmiller, J.-J.E. Slotine, Automatica 34, 683 (1998)CrossRefGoogle Scholar
  41. 41.
    S.K. Pradhan, B. Subudhi, IEEE Trans. Control Syst. Technol. 22, 1 (2014)CrossRefGoogle Scholar
  42. 42.
    B. Subudhi, A.S. Morris, Rob. Auton. Syst. 41, 257 (2002)CrossRefGoogle Scholar
  43. 43.
    A. De Luca, B. Siciliano, IEEE Trans. Syst. Man Cybern. 21, 826 (1991)CrossRefGoogle Scholar
  44. 44.
    B. Siciliano, W.J. Book, Int. J. Rob. Res. 7, 79 (1988)CrossRefGoogle Scholar
  45. 45.
    D.A. Prousalis, C.K. Volos, I.N. Stouboulos, I.M. Kyprianidis, Int. J. Simul. Process Model. 13, 433 (2018)CrossRefGoogle Scholar
  46. 46.
    A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Physica D 16, 285 (1985)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    QUANSER, Equation for the Frist (Second) Stage of the 2DOF Serial Flexible Link Robot (2006)Google Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Kshetrimayum Lochan
    • 1
    Email author
  • Binoy Krishna Roy
    • 2
  • Bidyadhar Subudhi
    • 3
  1. 1.Department of MechatronicsMIT, Manipal Academy of Higher EducationManipalIndia
  2. 2.Department of Electrical EngineeringNational Institute of Technology SilcharSilcharIndia
  3. 3.Department of Electrical EngineeringNational Institute of Technology RourkelaRourkelaIndia

Personalised recommendations