Advertisement

The European Physical Journal Special Topics

, Volume 228, Issue 10, pp 2185–2196 | Cite as

Infinitely many hidden attractors in a new fractional-order chaotic system based on a fracmemristor

  • Jesus M. Muñoz-PachecoEmail author
Regular Article
  • 2 Downloads
Part of the following topical collections:
  1. Memristor-based Systems: Nonlinearity, Dynamics and Applications

Abstract

Memristor and fractional-order derivatives are feasible options for constructing new systems with complex dynamics. This paper presents a new fractional-order chaotic system based on a fractional-order memristor (fracmemristor). It is worth noting that this chaotic system based on a fracmemristor does not have any equilibrium points but generates infinitely many hidden chaotic attractors and other dynamical behaviors. Systematic studies of the hidden chaotic behavior in the proposed system are performed using phase portraits, bifurcation diagrams, Lyapunov exponents, and riddled basins of attraction.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Chua, IEEE Trans. Circuit Theory 18, 507 (1971)CrossRefGoogle Scholar
  2. 2.
    D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453, 80 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    F. Corinto, M. Forti, IEEE Trans. Circuits Syst. I Regul. Pap. 63, 1997 (2016)CrossRefGoogle Scholar
  4. 4.
    Q. Hong, J. Zhao, X. Wang, Neurocomputing 330, 11 (2019)CrossRefGoogle Scholar
  5. 5.
    A.H. Fouad, A.G. Radwan, Int. J. Electron. Commun. 98, 123 (2019)CrossRefGoogle Scholar
  6. 6.
    B. Bodo, J.S. Armand Eyebe Fouda, A. Mvogo, S. Tagne, Chaos Solitons Fractals 115, 190 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Xu, Y. Jia, J. Ma, A. Alsaedi, B. Ahmad, Chaos Solitons Fractals 104, 435 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    S. Shin, K. Kim, S.-M. Kang, IEEE Trans. Nanotechnol. 10, 266 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nano Lett. 10, 1297 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    V.-T. Pham, S. Vaidyanathan, C. Volos, S. Jafari, N.V. Kuznetsov, T.M. Hoang, Eur. Phys. J. Special Topics 225, 127 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    P. Saha, D.C. Saha, A. Ray, A.R. Chowdhury, Eur. Phys. J. Special Topics 224, 1563 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    A.L. Fitch, D. Yu, H.H.C. Iu, V. Sreeram, Int. J. Bifurc. Chaos 22, 1250133 (2012)CrossRefGoogle Scholar
  13. 13.
    K. Rajagopal, H. Jahanshahi, M. Varan, I. Bayr, V.T. Pham, S. Jafari, A. Karthikeyan, Int. J. Electron. Commun. (AEU) 94, 55 (2018)CrossRefGoogle Scholar
  14. 14.
    G.A. Leonov, N.V. Kuznetsov, Int. J. Bifurc. Chaos 23, 1330002 (2013)CrossRefGoogle Scholar
  15. 15.
    G.A. Leonov, N.V. Kuznetsov, V.I. Vagaitsev, Phys. Lett. A 375, 2230 (2011)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    A. Sambas, S. Vaidyanathan, M. Mamat, M.A. Mohamed, W.S. Mada Sanjaya, Int. J. Electr. Comput. Eng. 8, 4951 (2018)Google Scholar
  17. 17.
    S. Vaidyanathan, A. Sambas, S. Kacar, U. Cavusoglu, Int. J. Model. Identif. Control 30, 184 (2018)CrossRefGoogle Scholar
  18. 18.
    J.M. Munoz-Pacheco, E. Zambrano-Serrano, C. Volos, S. Jafari, J. Kengne, K. Rajagopal, Entropy 20, 564 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    S. Vaidyanathan, A. Sambas, M. Mamat, Arch. Control Sci. 28, 443 (2018)Google Scholar
  20. 20.
    S. Mobayen, A. Sambas, S. Kaçar, U. Cavusoglu, Iran. J. Sci. Technol. Trans. Electr. Eng. 43, 1 (2019)CrossRefGoogle Scholar
  21. 21.
    Y.-F. Pu, X. Yuan, IEEE Access 4, 1872 (2016)CrossRefGoogle Scholar
  22. 22.
    J.M. Munoz-Pacheco, E. Zambrano-Serrano, C. Volos, O.I. Tacha, I.N. Stouboulos, V.-T. Pham, Chaos Solitons Fractals 113, 69 (2018)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    H.G. Sun, Y. Zhang, D. Baleanu, W. Chen, Y.Q. Chen, Commun. Nonlinear Sci. Numer. Simul. 64, 213 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    E. Zambrano-Serrano, J.M. Munoz-Pacheco, L.C. Gomez-Pavon, A. Luis-Ramos, G. Chen, Eur. Phys. J. Special Topics 227, 907 (2018)ADSCrossRefGoogle Scholar
  25. 25.
    P. Prakash, J.P. Singh, B.K. Roy, IFAC-PapersOnLine 51, 1 (2018)CrossRefGoogle Scholar
  26. 26.
    N. Yang, C. Xu, C. Wu, R. Jia, Int. J. Bifurc. Chaos 27, 1750199 (2017)CrossRefGoogle Scholar
  27. 27.
    C. Coopmans, I. Petras, Y.Q. Chen, in ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, California, 2009 (2009), p. 1127Google Scholar
  28. 28.
    Y. Yu, Z. Wang, Int. J. Bifurc. Chaos 28, 1850091 (2018)CrossRefGoogle Scholar
  29. 29.
    I. Petras, IEEE Trans. Circuits Syst. II Express Briefs 57, 975 (2010)CrossRefGoogle Scholar
  30. 30.
    G. Si, L. Diao, J. Zhu, Nonlinear Dyn. 87, 2625 (2017)CrossRefGoogle Scholar
  31. 31.
    C. Sanchez-Lopez, V.H. Carbajal-Gomez, M.A. Carrasco-Aguilar, I. Carro-Perez, Complexity 2018, 2806976 (2018)CrossRefGoogle Scholar
  32. 32.
    L. Xu, G. Huang, Y.-F. Pu, J. Circuits Syst. Comput. 27, 1850227 (2018)CrossRefGoogle Scholar
  33. 33.
    L. Teng, H.H.C. Iu, X.Y. Wang, X.K. Wang, Nonlinear Dyn. 77, 231 (2014)CrossRefGoogle Scholar
  34. 34.
    D. Cafagna, G. Grassi, Nonlinear Dyn. 70, 1185 (2012)CrossRefGoogle Scholar
  35. 35.
    X. Huang, J. Jia, Y. Li, Z. Wang, Neurocomputing 218, 296 (2016)CrossRefGoogle Scholar
  36. 36.
    S. Wen, Z. Zeng, T. Huang, Y. Chen, Phys. Lett. A 377, 2016 (2013)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    C. Volos, V.-T. Pham, E. Zambrano-Serrano, J.M. Munoz-Pacheco, S. Vaidyanathan, E. Tlelo-Cuautle, in Advances in Memristors, Memristive Devices and Systems, edited by S. Vaidyanathan, C. Volos (Springer, 2017)Google Scholar
  38. 38.
    X. Zhang, G. Chen, Chaos 27, 071101 (2017)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    C. Li, J.C. Sprott, Y. Mei, Nonlinear Dyn. 89, 2629 (2017)CrossRefGoogle Scholar
  40. 40.
    C. Li, J.C. Sprott, T. Kapitaniak, T. Lu, Chaos Solitons Fractals 109, 76 (2018)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    C. Li, J.C. Sprott, Phys. Lett. A 382, 581 (2018)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    C. Li, W.J.-C. Thio, J.C. Sprott, H.H.-C. Iu, Y. Xa, IEEE Access 6, 29003 (2018)CrossRefGoogle Scholar
  43. 43.
    Z. Wang, H.R. Abdolmohammadi, F.E. Elsaadi, T. Hayat, V.-T. Pham, Chaos Solitons Fractals 110, 252 (2018)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    H. Jahanshahi, K. Rajagopal, A. Akgul, N.N. Sari, H. Namazi, S. Jafari, Int. J. Nonlinear Mech. 107, 126 (2018)ADSCrossRefGoogle Scholar
  45. 45.
    F.T. Arecchi, R. Meucci, G. Puccioni, J. Tredicce, Phys. Rev. Lett. 49, 1217 (1982)ADSCrossRefGoogle Scholar
  46. 46.
    A. Joshi, M. Xiao, Phys. Rev. Lett. 91, 143904 (2003)ADSCrossRefGoogle Scholar
  47. 47.
    A. Komarov, H. Leblond, F. Sanchez, Phys. Rev. A Gen. Phys. 71, 053809 (2005)ADSCrossRefGoogle Scholar
  48. 48.
    M.P. Dafilis, F. Frascoli, P.J. Cadusch, D.T.J. Liley, Physica D 238, 1056 (2009)ADSCrossRefGoogle Scholar
  49. 49.
    J. Sun, X. Zhao, J. Fang, Y. Wang, Nonlinear Dyn. 94, 2879 (2018)CrossRefGoogle Scholar
  50. 50.
    G. Wang, F. Yuan, G. Chen, Y. Zhang, Chaos 28, 013125 (2018)ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    V.-T. Pham, S. Vaidyanathan, C. Volos, S. Jafari, X. Wang, in Advances and Applications in Chaotic Systems, edited by S. Vaidyanathan, C. Volos (Springer, 2016)Google Scholar
  52. 52.
    L. Chua, S.M. Kang, Proc. IEEE 64, 209 (1976)MathSciNetCrossRefGoogle Scholar
  53. 53.
    J. Sun, N. Li, Y. Wang, S. Xu, J. Geng, Optik 156, 1 (2018)ADSCrossRefGoogle Scholar
  54. 54.
    B. Muthuswamy, P. Kokate, ETE Tech. Rev. 26, 1 (2009)Google Scholar
  55. 55.
    A.M.A. El-Sayed, A. Elsaid, H.M. Nour, A. Elsonbaty, Commun. Nonlinear Sci. Numer. Simul. 18, 148 (2013)ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    A.E. Matouk, H.N. Agiza, J. Math. Anal. Appl. 341, 259 (2008)MathSciNetCrossRefGoogle Scholar
  57. 57.
    I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications (Academic Press, San Diego, 1998)Google Scholar
  58. 58.
    S. Prasad Adhikari, M.P. Sah, H. Kim, L.O. Chua, IEEE Trans. Circuits Syst. I Regul. Pap. 60, 3008 (2013)CrossRefGoogle Scholar
  59. 59.
    K. Diethelm, N.J. Ford, J. Math. Anal. Appl. 265, 229 (2002)MathSciNetCrossRefGoogle Scholar
  60. 60.
    A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Physica D 16, 285 (1985)ADSMathSciNetCrossRefGoogle Scholar
  61. 61.
    D. Li, J. Lu, X. Wu, G. Chen, J. Math. Anal. Appl. 323, 844 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Electronics Sciences, Benemérita Universidad Autónoma de PueblaPueblaMexico

Personalised recommendations