Advertisement

The European Physical Journal Special Topics

, Volume 228, Issue 10, pp 2171–2184 | Cite as

Complex behaviors in a new 4D memristive hyperchaotic system without equilibrium and its microcontroller-based implementation

  • Paul Didier Kamdem Kuate
  • Qiang LaiEmail author
  • Hilaire Fotsin
Regular Article
  • 14 Downloads
Part of the following topical collections:
  1. Memristor-based Systems: Nonlinearity, Dynamics and Applications

Abstract

The construction of dynamic systems with new features has always been an interesting research topic. Since the introduction of the first memristor model, several memristive systems have been reported. This paper focuses on a new memristive hyperchaotic system without equilibrium, emerging from the extended diffusionless Lorenz equations. Its rich dynamics is demonstrated by using familiar tools. Hyperchaos, very long transient chaotic regimes, rare bursting oscillations schemes and coexistence of four attractors are noticed. A low-cost microcontroller-based implementation for digital engineering applications is presented to confirm its feasibility.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.O. Chua, IEEE Trans. Circuit Theory 18, 507 (1971)CrossRefGoogle Scholar
  2. 2.
    D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453, 80 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    B.C. Bao, X. Zou, Z. Liu, Z. Liu, F.W. Hu, Int. J. Bifurc. Chaos 23, 1350135 (2013)CrossRefGoogle Scholar
  4. 4.
    V.T. Pham, S. Vaidyanathan, E. Tlelo-Cuautle, T. Kapitaniak, Complexity 2019, 4936123 (2019)CrossRefGoogle Scholar
  5. 5.
    J.A. Starzyk, J.A. Basawaraj, IEEE Trans. Circuits Syst. I Regul. Pap. 61, 2390 (2014)CrossRefGoogle Scholar
  6. 6.
    V.T. Pham, J. Sajad, S. Vaidyanathan, C. Volos, X. Wang, Sci. China Technol. Sci. 59, 358 (2016)CrossRefGoogle Scholar
  7. 7.
    J. Borghettil, G.S. Snider, P.J. Kuekes, J.J. Yang, D.R. Stewart, R.S. Williams, Nat. Lett. 464, 873 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    L.O. Chua, S.M. Kang, Proc. IEEE 64, 209 (1976)MathSciNetCrossRefGoogle Scholar
  9. 9.
    B. Muthuswamy, Int. J. Bifurc. Chaos 20, 1335 (2010)CrossRefGoogle Scholar
  10. 10.
    P. Saha, D.C. Saha, A. Ray, R. Chowdhury, Eur. Phys. J. Special Topics 224, 1563 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    L.O. Chua, Semicond. Sci. Technol. 29, 104001 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    S.P. Adhikari, M.P. Sah, H. Kim, L.O. Chua, IEEE Trans. Circuits Syst. I Regul. Pap. 60, 3008 (2013)CrossRefGoogle Scholar
  13. 13.
    M. Itoh, L.O. Chua, Int. J. Bifurc. Chaos 18, 3183 (2008)CrossRefGoogle Scholar
  14. 14.
    B. Muthuswamy, P.P. Kokate, IETE Tech. Rev. 26, 417 (2009)CrossRefGoogle Scholar
  15. 15.
    L. Lu, C. Li, Z. Zhao, B. Bao, Q. Xu, Math. Prob. Eng. 2015, 249102 (2015)Google Scholar
  16. 16.
    M. Chen, M. Li, Q. Yu, B. Bao, Q. Xu, J. Wang, Nonlinear Dyn. 81, 215 (2015)CrossRefGoogle Scholar
  17. 17.
    S. Wang, X. Wang, Y. Zhou, Entropy 17, 7628 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    R. Wang, M.J. Li, Z. Gao, H. Sun, Complexity 2018, 6069401 (2018)Google Scholar
  19. 19.
    B. Bao, Z. Ma, J. Xu, Z. Liu, Q. Xu, Int. J. Bifurc. Chaos 353, 2629 (2011)CrossRefGoogle Scholar
  20. 20.
    J. Sun, N. Li, Y. Wanga, S. Xu, J. Genga, Optik – Int. J. Light Electron Opt. 156, 1 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    D. Yu, H.H. Iu, Y. Liang, T. Fernando, L.O. Chua, IEEE Trans. Circuits Syst. I Regul. Pap. 62, 1607 (2015)MathSciNetCrossRefGoogle Scholar
  22. 22.
    G.A. Leonov, N.V. Kuznetsov, Int. J. Bifurc. Chaos 23, 1330002 (2013)CrossRefGoogle Scholar
  23. 23.
    S. Jafari, J.C. Sprott, F. Nazarimehr, Eur. Phys. J. Special Topics 224, 1469 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    B.C. Bao, H. Bao, N. Wang, M. Chen, Q. Xu, Chaos Solitons Fractals 94, 102 (2017)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    C. Li, J.C. Sprott, Int. J. Bifurc. Chaos 22, 1450034 (2014)CrossRefGoogle Scholar
  26. 26.
    A. Wolf, J.B. Swift, H.L. Swinney, J. Vastano, Physica D 16, 285 (1985)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    S. Jafari, V.T. Pham, S. Mohammad Reza Hashemi Golpayegani, M. Moghtadaei, S.T. Kingni, Int. J. Bifurc. Chaos 26, 1650211 (2016)CrossRefGoogle Scholar
  28. 28.
    V.T. Pham, C.K. Volos, S. Vaidyanathan, T.P. Le, V.Y. Vu, J. Eng. Sci. Technol. Rev. 8, 205 (2014)CrossRefGoogle Scholar
  29. 29.
    V.T. Pham, C. Volos, S. Jafari, Z. Wei, X. Wang, Int. J. Bifurc. Chaos 24, 1450073 (2014)CrossRefGoogle Scholar
  30. 30.
    V.T. Pham, S. Vaidyanathan, C.K. Volos, S. Jafari, N.V. Kuznetsov, T.M. Hoang, Eur. Phys. J. Special Topics 225, 127 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    A.T. Azar, C. Volos, N.A. Gerodimos, G.S. Tombras, V.T. Pham, A.G. Radwan, S. Vaidyanathan, A. Ouannas, J.M. Munoz-Pacheco, Complexity 2017, 7871467 (2017)CrossRefGoogle Scholar
  32. 32.
    S. Zhang, Y. Zeng, Chaos Solitons Fractals 120, 25 (2019)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    J. Ma, Z. Chen, Z. Wang, Q. Zhang, Nonlinear Dyn. 81, 1275 (2009)CrossRefGoogle Scholar
  34. 34.
    Q. Li, S. Hu, S. Tang, G. Zeng, Int. J. Circuit Theory Appl. 42, 1172 (2013)CrossRefGoogle Scholar
  35. 35.
    Q. Li, H. Zeng, J. Li, Nonlinear Dyn. 79, 2295 (2015)CrossRefGoogle Scholar
  36. 36.
    G. Van-der-Schrier, L.R.M. Maas, Physica D 141, 19 (2000)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    E.N. Lorenz, J. Atmos. Sci. 20, 130 (1963)ADSCrossRefGoogle Scholar
  38. 38.
    C. Li, J.C. Sprott, Optik 127, 10389 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    Y. Pomeau, P. Manneville, Commun. Math. Phys. 74, 189 (1980)ADSCrossRefGoogle Scholar
  40. 40.
    N.H. Alombah, H. Fotsin, K. Romanic, Int. J. Bifurc. Chaos 27, 175006 (2017)CrossRefGoogle Scholar
  41. 41.
    Q. Lai, S.M. Chen, Int. J. Bifurc. Chaos 26, 1650177 (2016)CrossRefGoogle Scholar
  42. 42.
    B.A. Mezatio, M.T. Motchongom, B.R.W. Tekam, R. Kengne, R. Tchitnga, A. Fomethe, Chaos Solitons Fractals 120, 100 (2019)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    Q. Bi, Z. Zhang, Phys. Lett. A 375, 1183 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    N.V. Stankevich, N.V. Kuznetsov, G.A. Leonov, L.O. Chua, Int. J. Bifurc. Chaos 27, 1730038 (2017)CrossRefGoogle Scholar
  45. 45.
    Q. Li, H. Zeng, J. Li, Nonlinear Dyn. 79, 2295 (2015)CrossRefGoogle Scholar
  46. 46.
    L. Zhou, C. Wang, L. Zhou, Nonlinear Dyn. 85, 2653 (2016)CrossRefGoogle Scholar
  47. 47.
    V.T. Pham, C. Volos, L.V. Gambuzza, Sci. World J. 2014, 368986 (2014)CrossRefGoogle Scholar
  48. 48.
    J. Li, F. Liu, Z.H. Guan, T. Li, Neurocomputing 117, 33 (2013)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Paul Didier Kamdem Kuate
    • 1
  • Qiang Lai
    • 2
    Email author
  • Hilaire Fotsin
    • 1
  1. 1.Laboratory of Condensed Matter, Electronics and Signal Processing, Department of Physics, University of DschangDschangCameroon
  2. 2.School of Electrical and Automation Engineering, East China Jiaotong UniversityNanchangP.R. China

Personalised recommendations