Advertisement

The European Physical Journal Special Topics

, Volume 228, Issue 10, pp 2147–2155 | Cite as

Synchronization in a network of chaotic memristive jerk oscillators

  • Shirin Panahi
  • Sajad JafariEmail author
Regular Article
  • 9 Downloads
Part of the following topical collections:
  1. Memristor-based Systems: Nonlinearity, Dynamics and Applications

Abstract

There is a growing attraction to memristive chaotic systems since last decades. This paper provides a complete dynamical analysis of a chaotic memristive jerk system. Complex behavior of this system is studied with the help of equilibrium analysis, state space plots of trajectories, and bifurcation and Lyapunov exponents’ diagrams. The equilibrium analysis reveals that this system can have no equilibrium or two equilibria depending on the value of the parameters. When it has no equilibrium, it’s strange attractor is hidden. The collective behavior of this chaotic oscillator in dynamical networks is investigated by master stability function (MSF) which checks the stability of the synchronization manifold. According to the MSF analysis, the identical network of memristive oscillator belongs to the network type I.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N.A. Gershenfeld, N. Gershenfeld, The Nature of Mathematical Modeling (Cambridge University Press, Cambridge, 1999)Google Scholar
  2. 2.
    A.M. Law, W.D. Kelton, W.D. Kelton, Simulation Modeling and Analysis (McGraw-Hill, New York, 1991), Vol. 2Google Scholar
  3. 3.
    X. Hu, C. Liu, L. Liu, J. Ni, S. Li, Nonlinear Dyn. 84, 2317, (2016)CrossRefGoogle Scholar
  4. 4.
    X. Hu, C. Liu, L. Liu, J. Ni, Y. Yao, Nonlinear Dyn. 91, 1541 (2018)CrossRefGoogle Scholar
  5. 5.
    H. Preissl, W. Lutzenberger, F. Pulvermüller, Behav. Brain Sci. 19, 307 (1996)CrossRefGoogle Scholar
  6. 6.
    R.C. Hilborn, Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers (Oxford University Press, Oxford, 2000)Google Scholar
  7. 7.
    G.F. Kuiate, K. Rajagopal, S.T. Kingni, V.K. Tamba, S. Jafari, Int. J. Dyn. Control 6, 1008 (2018)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ü. Çavuşoğlu, S. Panahi, A. Akgül, S. Jafari, S. Kaçar, Analog Integr. Circ. Sig. Process. 98, 85 (2019)CrossRefGoogle Scholar
  9. 9.
    S. Jafari, J.C. Sprott, V.T. Pham, C. Volos, C. Li, Nonlinear Dyn. 86, 1349 (2016)CrossRefGoogle Scholar
  10. 10.
    M.A. Jafari, E. Mliki, A. Akgul, V.T. Pham, S.T. Kingni, X. Wang, S. Jafari, Nonlinear Dyn. 88, 2303 (2017)CrossRefGoogle Scholar
  11. 11.
    K. Rajagopal, A. Akgul, S. Jafari, A. Karthikeyan, I. Koyuncu, Chaos, Solitons Fractals 103, 476 (2017)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    K. Rajagopal, S. Jafari, G. Laarem, Pramana 89, 92 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    J. Ma, X. Wu, R. Chu, L. Zhang, Nonlinear Dyn. 76, 1951 (2014)CrossRefGoogle Scholar
  14. 14.
    S. Jafari, V.-T. Pham, T. Kapitaniak, Int. J. Bifurcation Chaos 26, 1650031 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    X. Hu, C. Liu, L. Liu, J. Ni, S. Li, Nonlinear Dyn. 86, 1725 (2016)CrossRefGoogle Scholar
  16. 16.
    C.L. Xiaoyu Hu, L. Liu, Y. Yao, G. Zheng, Chin. Phys. B 26, 110502 (2017)CrossRefGoogle Scholar
  17. 17.
    G. Leonov, N. Kuznetsov, V. Vagaitsev, Physica D 241, 1482 (2012)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    M.-F. Danca, N. Kuznetsov, Chaos, Solitons Fractals 103, 144 (2017)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    S. Jafari, J. Sprott, F. Nazarimehr, Eur. Phys. J. Special Topics 224, 1469 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    P.R. Sharma, M.D. Shrimali, A. Prasad, N.V. Kuznetsov, G.A. Leonov, Eur. Phys. J. Special Topics 224, 1485 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    J. Kengne, V.F. Signing, J.C. Chedjou, G.D. Leutcho, Int. J. Dyn. Control 6, 468 (2018)MathSciNetCrossRefGoogle Scholar
  22. 22.
    J. Kengne, G.D. Leutcho, A.N.K. Telem, Analog Integr. Circ. Sig. Process,  https://doi.org/10.1007/s10470-018-1372-5
  23. 23.
    G. Leutcho, J. Kengne, L.K. Kengne, Chaos, Solitons Fractals 107, 67 (2018)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    J.C. Sprott, Elegant Chaos: Algebraically Simple Chaotic Flows (World Scientific, 2010)Google Scholar
  25. 25.
    S.H. Schot, Am. J. Phys. 46, 1090 (1978)ADSCrossRefGoogle Scholar
  26. 26.
    S. Ren, S. Panahi, K. Rajagopal, A. Akgul, V.T. Pham, S. Jafari, Z. Naturforsch. A 73, 239 (2018)ADSCrossRefGoogle Scholar
  27. 27.
    G.D. Leutcho, J. Kengne, Chaos, Solitons Fractals 113, 275 (2018)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    L. Chua, IEEE Trans. Circuit Theory 18, 507 (1971)CrossRefGoogle Scholar
  29. 29.
    D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453, 80 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    L.O. Chua, S.M. Kang, Proc. IEEE 64, 209 (1976)MathSciNetCrossRefGoogle Scholar
  31. 31.
    M. Itoh, L.O. Chua, Int. J. Bifurc. Chaos 18, 3183 (2008)CrossRefGoogle Scholar
  32. 32.
    B. Muthuswamy, P.P. Kokate, IETE Tech. Rev. 26, 417 (2009)CrossRefGoogle Scholar
  33. 33.
    B. Muthuswamy, L.O. Chua, Int. J. Bifurc. Chaos 20, 1567 (2010)CrossRefGoogle Scholar
  34. 34.
    B. Linares-Barranco, T. Serrano-Gotarredona, Memristance can explain spike-time-dependent-plasticity in neural synapses (2009)Google Scholar
  35. 35.
    J.-M. Ginoux, C. Letellier, L.L. Chua, Int. J. Bifurc. Chaos 20, 3819 (2010)CrossRefGoogle Scholar
  36. 36.
    A.Y. Zomaya, Handbook of Nature-inspired and Innovative Computing: Integrating Classical Models with Emerging Technologies (Springer Science and Business Media, 2006)Google Scholar
  37. 37.
    G. Wang, M. Cui, B. Cai, X. Wang, T. Hu, Math. Prob. Eng. 2015 (2015)Google Scholar
  38. 38.
    S. Kundu, S. Majhi, P. Karmakar, D. Ghosh, B. Rakshit, EPL 123, 30001 (2018)ADSCrossRefGoogle Scholar
  39. 39.
    S. Majhi, D. Ghosh, J. Kurths, Phys. Rev. E 99, 012308 (2019)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    S. Panahi, T. Shirzadian, M. Jalili, S. Jafari, Appl. Math. Comput. 346, 395 (2019)MathSciNetGoogle Scholar
  41. 41.
    S. Mostaghimi, F. Nazarimehr, S. Jafari, J. Ma, Appl. Math. Comput. 348, 42 (2019)MathSciNetGoogle Scholar
  42. 42.
    S. Kundu, S. Majhi, P. Muruganandam, D. Ghosh, Eur. Phys. J. Special Topics 227, 983 (2018)ADSCrossRefGoogle Scholar
  43. 43.
    S. Majhi, B.K. Bera, D. Ghosh, M. Perc, Phys. Life Rev. 28, 100 (2018)ADSCrossRefGoogle Scholar
  44. 44.
    Z. Wei, F. Parastesh, H. Azarnoush, S. Jafari, D. Ghosh, M. Perc, M. Slavinec, EPL 123, 48003 (2018)CrossRefGoogle Scholar
  45. 45.
    Z. Faghani, Z. Arab, F. Parastesh, S. Jafari, M. Perc, M. Slavinec, Chaos, Solitons, Fractals 114, 306 (2018)CrossRefGoogle Scholar
  46. 46.
    F. Parastesh, S. Jafari, H. Azarnoush, B. Hatef, A. Bountis, Chaos, Solitons Fractals 110, 203 (2018)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    J. Ma, J. Tang, Sci. Chin. Technol. Sci. 58, 2038 (2015)CrossRefGoogle Scholar
  48. 48.
    J. Ma, J. Tang, Nonlinear Dyn. 89, 1569 (2017)CrossRefGoogle Scholar
  49. 49.
    C. Wang, J. Ma, Int. J. Mod. Phys. B 32, 1830003 (2018)ADSCrossRefGoogle Scholar
  50. 50.
    Z. Rostami, K. Rajagopal, A.J.M. Khalaf, S. Jafari, M. Perc, M. Slavinec, Physica A 509, 1162 (2018)ADSCrossRefGoogle Scholar
  51. 51.
    Z. Rostami, V.T. Pham, S. Jafari, F. Hadaeghi, J. Ma, Appl. Math. Comput. 338, 141 (2018)MathSciNetGoogle Scholar
  52. 52.
    F. Parastesh, H. Azarnoush, S. Jafari, B. Hatef, M. Perc, R. Repnik, Appl. Math. Comput. 350, 217 (2019)MathSciNetGoogle Scholar
  53. 53.
    B. Bao, X. Zou, Z. Liu, F. Hu, Int. J. Bifurc. Chaos 23, 1350135 (2013)CrossRefGoogle Scholar
  54. 54.
    M. Chen, Y. Feng, H. Bao, B.C. Bao, Y.J. Yu, H.G. Wu, Q. Xu, Chaos, Solitons Fractals 115, 313 (2018)ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    D. Dudkowski, S. Jafari, T. Kapitaniak, N.V. Kuznetsov, G.A. Leonov, A. Prasad, Phys. Rep. 637, 1 (2016)ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    A.J.M.K. Yan-Xia Tang, K. Rajagopal, V.-T. Pham, S. Jafari, Y. Tian, Chin. Phys. B 27, 40502 (2018)CrossRefGoogle Scholar
  57. 57.
    A. Bayani, K. Rajagopal, A.J.M. Khalaf, S. Jafari, G.D. Leutcho, J. Kengne, Phys. Lett. A 383, 1450 (2019)ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    A. Hurwitz, Math. Ann. 46, 273 (1895)MathSciNetCrossRefGoogle Scholar
  59. 59.
    V.-T. Pham, S. Jafari, C. Volos, T. Gotthans, X. Wang, D.V. Hoang, Optik 130, 365 (2017) ADSCrossRefGoogle Scholar
  60. 60.
    S.H. Strogatz, Nature 410, 268 (2001)ADSCrossRefGoogle Scholar
  61. 61.
    S. Majhi, D. Ghosh, Chaos: Interdiscip, J. Nonlinear Sci. 28, 083113 (2018)Google Scholar
  62. 62.
    J. Gao, B. Barzel, A.-L. Barabási, Nature 530, 307 (2016)ADSCrossRefGoogle Scholar
  63. 63.
    S. Majhi, M. Perc, D. Ghosh, Chaos: Interdiscip, J. Nonlinear Sci. 27, 073109 (2017)Google Scholar
  64. 64.
    R.V. Gould, Am. Sociol. Rev. 58, 182 (1993)CrossRefGoogle Scholar
  65. 65.
    A. Pikovsky, M. Rosenblum, J. Kurths, in Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, 2003), Vol 12Google Scholar
  66. 66.
    A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, C. Zhou, Phys. Rep. 469, 93 (2008)ADSMathSciNetCrossRefGoogle Scholar
  67. 67.
    B.K. Bera, S. Majhi, D. Ghosh, M. Perc, EPL 118, 10001 (2017)ADSCrossRefGoogle Scholar
  68. 68.
    L.M. Pecora, T.L. Carroll, Phys. Rev. Lett. 80, 2109 (1998)ADSCrossRefGoogle Scholar
  69. 69.
    V.N. Belykh, I.V. Belykh, M. Hasler, Physica D 195, 159 (2004)ADSMathSciNetCrossRefGoogle Scholar
  70. 70.
    S.H. Strogatz, Physica D 143, 1 (2000)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringAmirkabir University of TechnologyTehranIran

Personalised recommendations