Advertisement

A study on dynamical complexity of noise induced blood flow

  • 7 Accesses

  • 1 Citations

Abstract

In this article, the dynamics and complexity of a noise induced blood flow system have been investigated. Changes in the dynamics have been recognized by measuring the fluctuation of periodicity over significant parameters. Chaotic as well as non-chaotic regimes have also been classified. Further, dynamical complexity has been studied by phase space based weighted entropy concept. Numerical results show a strong correlation between the dynamics and complexity of the noise induced system. The confirmation is done by statistical analysis.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

References

  1. 1.

    B.D. Sharma, P.K. Yadav, Natl. Acad. Sci. Lett. 42, 239 (2019)

  2. 2.

    T.J. Pedley, J. Eng. Math. 47, 419 (2003)

  3. 3.

    J.C. Misra, S.D. Adhikary, B. Mallick, A. Sinha, J. Mech. Med. Biol. 18, 1850001 (2018)

  4. 4.

    Y. Itzchak, G. Dorfman, M. Glickman, E. Pingoud, Invest. Radiol. 17, 265 (1982)

  5. 5.

    A.R. Haghighi, S.A. Chalak, J. Braz. Soc. Mech. Sci. Eng. 39, 2487 (2017)

  6. 6.

    M. Roy, B.S. Sikarwar, M. Bhandwal, P. Ranjan, Procedia Comput. Sci. 115, 821 (2017)

  7. 7.

    X.P. Guan, Z.P. Fan, C.L. Chen, C.C. Hua,Chaos Control and its Application in Secure Communication (National Defense Industry Press, 2002)

  8. 8.

    F. Takens, Detecting strange attractors in turbulence, inDynamical Systems and Turbulence, Lecture Notes in Mathematics (1981), Vol. 898, pp. 366–381

  9. 9.

    D.T. Kaplan, L. Glass,Understanding Nonlinear Dynamics (Springer, New York, 1995)

  10. 10.

    S.H. Strogatz,Nonlinear Dynamics and Chaos (Addison-Wesley, 1994)

  11. 11.

    E. Ott,Chaos in Dynamical Systems (Cambridge University Press, 1993)

  12. 12.

    D. Ruelle,Chaotic Evolution and Strange Attractors (Cambridge University Press, 1989)

  13. 13.

    J.L. McCauley,Chaos, Dynamics, and Fractals: An Algorithmic Approach to Deterministic Chaos (Cambridge University Press, 1993)

  14. 14.

    C.Y. Gong, Y.M. Li, X.H. Sun, J. Appl. Sci. 24, 604 (2006)

  15. 15.

    C.C. Wang, H.T. Yau, Abstr. Appl. Anal. 2013, 209718 (2013)

  16. 16.

    L. Rondoni, M.R.K. Ariffin, R. Varatharajoo, S. Mukherjee, S.K. Palit, S. Banerjee, Opt. Commun. 387, 257 (2017)

  17. 17.

    S. He, S. Banerjee, Physica A 501, 408 (2018)

  18. 18.

    R. Toral, C.R. Mirasso, E. Hernández-García, O. Piro, Chaos 11, 665 (2001)

  19. 19.

    T. Tél, Y.-C. Lai, M. Gruiz, Int. J. Bifurc. Chaos 18, 509 (2008)

  20. 20.

    D.V. Alexandrov, I.A. Bashkirtseva, L.B. Ryashko, Europhys. Lett. 115, 40009 (2016)

  21. 21.

    K. Briggs, Phys. Lett. A 151, 27 (1990)

  22. 22.

    A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Physica D 16, 285 (1985)

  23. 23.

    M.T. Rosenstein, J.J. Collins, C.J. De Luca, Physica D 65, 117 (1993)

  24. 24.

    S.K. Palit, S. Mukherjee, D.K. Bhattacharya, Neurocomputing 113, 49 (2013)

  25. 25.

    S.K. Palit, S. Mukherjee, D.K. Bhattacharya, Appl. Math. Comput. 218, 8951 (2012)

  26. 26.

    I.R. Stakhovsky, Izvestiya Phys. Solid Earth 52, 740 (2016)

  27. 27.

    L.M. Pecora, L. Moniz, J. Nichols, T.L. Carroll, Chaos 17, 013110 (2007)

  28. 28.

    M. Casdagli, S. Eubank, J. Farmer, J. Gibson, Physica D 51, 52 (1991)

  29. 29.

    T. Schreiber, H. Kantz, Chaos 5, 133 (1995)

  30. 30.

    G.A. Gottwald, I. Melbourne, Proc. R. Soc. London A 460, 603 (2004)

  31. 31.

    G.A. Gottwald, I. Melbourne, Phys. Rev. E 77, 028201 (2008)

  32. 32.

    D. Daems, G. Nicolis, Phys. Rev. E 59, 4000 (1999)

  33. 33.

    A.N. Kolmogorov, IRE Trans. Inf. Theory 2, 102 (1956)

  34. 34.

    S. Mukherjee, S.K. Palit, S. Banerjee, M.R.K. Ariffin, L. Rondoni, D.K. Bhattacharya, Physica A 439, 93 (2015)

  35. 35.

    S. Banerjee, S.K. Palit, S. Mukherjee, M.R.K. Ariffin, L. Rondoni, Chaos 26, 033105 (2016)

  36. 36.

    S. Mukherjee, S. Banerjee, L. Rondoni, Physica A 508, 131 (2018)

  37. 37.

    Ya.G. Sinai, Dokl. Russ. Acad. Sci. 124, 768 (1959)

  38. 38.

    S. He, C. Li, K. Sun, S. Jafari, Entropy 20, 556 2018

  39. 39.

    N. Marwan, M. Carmen Romano, M. Thiel, J. Kurths, Phys. Rep. 438, 237 (2007)

  40. 40.

    D. Eroglu, T.K.D. Peron, N. Marwan, F.A. Rodrigues, L. da F. Costa, M. Sebek, I.Z. Kiss, J. Kurths, Phys. Rev. E 90, 042919 (2014)

Download references

Author information

Correspondence to Sayan Mukherjee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yan, B., Mukherjee, S. & He, S. A study on dynamical complexity of noise induced blood flow. Eur. Phys. J. Spec. Top. 228, 2769–2777 (2019). https://doi.org/10.1140/epjst/e2019-900022-0

Download citation