Advertisement

The European Physical Journal Special Topics

, Volume 228, Issue 10, pp 2123–2131 | Cite as

Traveling patterns in a network of memristor-based oscillators with extreme multistability

  • Fatemeh Parastesh
  • Sajad JafariEmail author
  • Hamed Azarnoush
Regular Article
  • 3 Downloads
Part of the following topical collections:
  1. Memristor-based Systems: Nonlinearity, Dynamics and Applications

Abstract

The study of collective behaviors in the networks of memristive systems has achieved negligible attention. In this paper, a ring network of memristive based Wien-bridge oscillators is investigated. The Wien-bridge oscillator exhibits extreme multistability. Therefore, the initial conditions of the network can play an important role in the emergence of different spatiotemporal patterns. Here, the initial conditions are chosen in a small region, in which a single oscillator shows various attractors with similar topologies. It is observed that by varying the coupling strength and coupling range, various patterns are formed. In most of the appeared patterns, the traveling of coexistent coherent and incoherent oscillators is observed, whether in a part of the pattern or in the whole. It seems that the traveling patterns are formed due to the multistability of the oscillators and their time-scaled time series. Overall, by varying the coupling parameters, several patterns such as chimera state, traveling chimera and nonstationary chimera, are emerged in the network.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Chua, IEEE Trans. Circuit Theory 18, 507 (1971)CrossRefGoogle Scholar
  2. 2.
    S. Yang, Z. Guo, J. Wang, IEEE Trans. Syst. Man Cybern. Syst. 45, 1077 (2015)CrossRefGoogle Scholar
  3. 3.
    T. Driscoll, H.-T. Kim, B.-G. Chae, M. Di Ventra, D. Basov, Appl. Phys. Lett. 95, 043503 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    M. Lv, C. Wang, G. Ren, J. Ma, X. Song, Nonlinear Dyn. 85, 1479 (2016)CrossRefGoogle Scholar
  5. 5.
    Y. Xu, H. Ying, Y. Jia, J. Ma, T. Hayat, Sci. Rep. 7, 43452 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    J. Ma, P. Zhou, B. Ahmad, G. Ren, C. Wang, PloS One 13, e0191120 (2018)CrossRefGoogle Scholar
  7. 7.
    V.T. Pham, S. Jafari, S. Vaidyanathan, C. Volos, X. Wang, Sci. China Technol. Sci. 59, 358 (2016)CrossRefGoogle Scholar
  8. 8.
    K. Rajagopal, A. Bayani, A.J.M. Khalaf, H. Namazi, S. Jafari, V.-T. Pham, AEU-Int. J. Electron. Commun. 95, 207 (2018)CrossRefGoogle Scholar
  9. 9.
    N. Wang, B. Bao, T. Jiang, M. Chen, Q. Xu, Math. Prob. Eng. 2017, 13 (2017)Google Scholar
  10. 10.
    G. Zhang, J. Ma, A. Alsaedi, B. Ahmad, F. Alzahrani, Appl. Math. Comput. 321, 290 (2018)MathSciNetGoogle Scholar
  11. 11.
    B. Bao, T. Jiang, G. Wang, P. Jin, H. Bao, M. Chen, Nonlinear Dyn. 89, 1157 (2017)CrossRefGoogle Scholar
  12. 12.
    K. Rajagopal, H. Jahanshahi, M. Varan, I. Bayr, V.-T. Pham, S. Jafari, A. Karthikeyan, AEU Int. J. Electron. Commun. 94, 55 (2018)CrossRefGoogle Scholar
  13. 13.
    S. Vaidyanathan, V.-T. Pham, C. Volos, Advances in memristors, memristive devices and systems (Springer, 2017), p. 101Google Scholar
  14. 14.
    Y. Xu, Y. Jia, J. Ma, A. Alsaedi, B. Ahmad, Chaos Solitons Fractals 104, 435 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Xu, Y. Jia, J. Ma, T. Hayat, A. Alsaedi, Sci. Rep. 8, 1349 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    V. Berec, Eur. Phys. J. Special Topics 225, 7 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    M. Bolotov, L. Smirnov, G. Osipov, A. Pikovsky, Chaos 28, 045101 (2018)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    D. Dudkowski, Y. Maistrenko, T. Kapitaniak, Chaos 26, 116306 (2016)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    A. Yeldesbay, A. Pikovsky, M. Rosenblum, Phys. Rev. Lett. 112, 144103 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Kuramoto, D. Battogtokh, Nonlinear Phenom. Complex Syst. 5, 380 (2002)Google Scholar
  21. 21.
    D.M. Abrams, S.H. Strogatz, Phys. Rev. Lett. 93, 174102 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    B.K. Bera, S. Majhi, D. Ghosh, M. Perc, EPL 118, 10001 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    V. Berec, Chaos Solitons Fractals 86, 75 (2016)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    S. Brezetskiy, D. Dudkowski, P. Jaros, J. Wojewoda, K. Czolczynski, Y. Maistrenko, T. Kapitaniak, Indian Acad. Sci. Conf. Ser. 1, 187 (2017)Google Scholar
  25. 25.
    D. Dudkowski, Y. Maistrenko, T. Kapitaniak, Phys. Rev. E 90, 032920 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    Z. Faghani, Z. Arab, F. Parastesh, S. Jafari, M. Perc, M. Slavinec, Chaos Solitons Fractals 114, 306 (2018)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    J. Tang, J. Zhang, J. Ma, J. Luo, Sci. China Technol. Sci. 62, 1134 (2019)CrossRefGoogle Scholar
  28. 28.
    J.D. Hart, K. Bansal, T.E. Murphy, R. Roy, Chaos 26, 094801 (2016)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    S. Ghosh, A. Kumar, A. Zakharova, S. Jalan, EPL 115, 60005 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    S.A. Loos, J.C. Claussen, E. Schöll, A. Zakharova, Phys. Rev. E 93, 012209 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    S. Kundu, S. Majhi, B.K. Bera, D. Ghosh, M. Lakshmanan, Phys. Rev. E 97, 022201 (2018)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    T. Kapitaniak, P. Kuzma, J. Wojewoda, K. Czolczynski, Y. Maistrenko, Sci. Rep. 4 (2014)Google Scholar
  33. 33.
    F. Parastesh, S. Jafari, H. Azarnoush, B. Hatef, A. Bountis, Chaos Solitons Fractals 110, 203 (2018)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    S.W. Haugland, L. Schmidt, K. Krischer, Sci. Rep. 5, 9883 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    S. Majhi, D. Ghosh, Chaos 28, 083113 (2018)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    A.V. Slepnev, A.V. Bukh, T.E. Vadivasova, Nonlinear Dyn. 88, 2983 (2017)CrossRefGoogle Scholar
  37. 37.
    Z. Wei, F. Parastesh, H. Azarnoush, S. Jafari, D. Ghosh, M. Perc, M. Slavinec, EPL 123, 48003 (2018)CrossRefGoogle Scholar
  38. 38.
    B.K. Bera, D. Ghosh, T. Banerjee, Phys. Rev. E 94, 012215 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    D. Dudkowski, K. Czołczyński, T. Kapitaniak, Nonlinear Dyn. 95, 1859 (2019)CrossRefGoogle Scholar
  40. 40.
    A. Mishra, S. Saha, D. Ghosh, G.V. Osipov, S.K. Dana, Opera Med. Physiol. 3, 14 (2017)Google Scholar
  41. 41.
    J. Xie, E. Knobloch, H.-C. Kao, Phys. Rev. E 90, 022919 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    H. Bao, N. Wang, B. Bao, M. Chen, P. Jin, G. Wang, Commun. Nonlinear Sci. Numer. Simul. 57, 264 (2018)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Fatemeh Parastesh
    • 1
  • Sajad Jafari
    • 1
    Email author
  • Hamed Azarnoush
    • 1
  1. 1.Department of Biomedical EngineeringAmirkabir University of Technology (Tehran Polytechnic)TehranIran

Personalised recommendations