Advertisement

The European Physical Journal Special Topics

, Volume 228, Issue 11, pp 2419–2427 | Cite as

Synchronization and chimera states in a multilayer neuronal network with unidirectional interlayer links

  • Xiaodong Li
  • Tao Xu
  • Juan LiEmail author
Regular Article
  • 21 Downloads
Part of the following topical collections:
  1. Diffusion Dynamics and Information Spreading in Multilayer Networks

Abstract

The brain consists of many interconnected systems and subsystems that have unidirectional or bidirectional connectivities. In this paper, we consider a two-layer neuronal network with unidirectional interlayer connections to investigate the effects of one layer on the other one. Two one-dimensional ring networks with non-local couplings construct the two-layer network. The couplings are considered to be linear to describe the electrical synapses. At first, the independent layer, which is not affected by the other layer, is analysed. Different patterns such as synchronizations, non-stationary chimera state and imperfect synchronization are observed in such solo network. Then the two-layer network is investigated by varying three coupling strengths of intra-layer and inter-layer links. The results show that the first layer can change the behaviour of neurons in the second layer according to the values of coupling strengths. The interaction of the interlayer and intralayer couplings can also induce the emergence of imperfect chimera state, which was not observed in the monolayer network. These self-organized phenomena can have strong relations with brain functions and malfunctions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.E. Pereda, Nat. Rev. Neurosci. 15, 250 (2014)CrossRefGoogle Scholar
  2. 2.
    A. Pereda, D.S. Faber, Front. Mol. Neurosci. 11, 427 (2018)CrossRefGoogle Scholar
  3. 3.
    M. Dhamala, V.K. Jirsa, M. Ding, Phys. Rev. Lett. 92, 074104 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Hao, Y. Gong, L. Wang, X. Ma, C. Yang, Chaos Solitons Fractals 44, 260 (2011)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    X. Sun, J. Lei, M. Perc, J. Kurths, G. Chen, Chaos 21, 016110 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    J. Tang, J. Ma, M. Yi, H. Xia, X. Yang, Phys. Rev. E 83, 046207 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    T.I. Netoff, M.I. Banks, A.D. Dorval, C.D. Acker, J.S. Haas, N. Kopell, J.A. White, J. Neurophysiol. 93, 1197 (2005)CrossRefGoogle Scholar
  8. 8.
    I. Belykh, E. de Lange, M. Hasler, Phys. Rev. Lett. 94, 188101 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    P. Jiruska, M. De Curtis, J.G. Jefferys, C.A. Schevon, S.J. Schiff, K. Schindler, J. Physiol. 591, 787 (2013)CrossRefGoogle Scholar
  10. 10.
    M.G. Knyazeva, C. Carmeli, A. Khadivi, J. Ghika, R. Meuli, R.S. Frackowiak, Neurobiol. Aging 34, 694 (2013)CrossRefGoogle Scholar
  11. 11.
    T. Liu, P. Lin, Y. Chen, J. Wang, Bio-med. Mater. Eng. 24, 1035 (2014)Google Scholar
  12. 12.
    S. Majhi, M. Perc, D. Ghosh, Sci. Rep. 6, 39033 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    D.M. Abrams, S.H. Strogatz, Phys. Rev. Lett. 93, 174102 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    D. Dudkowski, Y. Maistrenko, T. Kapitaniak, Phys. Rev. E 90, 032920 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    J. Hizanidis, N.E. Kouvaris, Z.-L. Gorka, A. Daz-Guilera, C.G. Antonopoulos, Sci. Rep. 6, 19845 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    P. Jaros, Y. Maistrenko, T. Kapitaniak, Phys. Rev. E 91, 022907 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    F.P. Kemeth, S.W. Haugland, L. Schmidt, I.G. Kevrekidis, K. Krischer, Chaos 26, 094815 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    S. Majhi, M. Perc, D. Ghosh, Chaos 27, 073109 (2017)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    A. Mishra, S. Saha, D. Ghosh, G.V. Osipov, S.K. Dana, Opera Med. Physiol. 3, 14 (2017)Google Scholar
  20. 20.
    A. Schmidt, T. Kasimatis, J. Hizanidis, A. Provata, P. Hövel, Phys. Rev. E 95, 032224 (2017)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Z. Wei, F. Parastesh, H. Azarnoush, S. Jafari, D. Ghosh, M. Perc, M. Slavinec, Europhys. Lett. 123, 48003 (2018)CrossRefGoogle Scholar
  22. 22.
    Z.-M. Wu, H.-Y. Cheng, Y. Feng, H.-H. Li, Q.-L. Dai, J.-Z. Yang, Front. Phys. 13, 130503 (2018)CrossRefGoogle Scholar
  23. 23.
    F. Battiston, V. Nicosia, V. Latora, Phys. Rev. E 89, 032804 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    S. Boccaletti, G. Bianconi, R. Criado, C.I. Del Genio, J. Gómez-Gardenes, M. Romance, I. Sendina-Nadal, Z. Wang, M. Zanin, Phys. Rep. 544, 1 (2014)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    S. Gomez, A. Diaz-Guilera, J. Gomez-Gardenes, C.J. Perez-Vicente, Y. Moreno, A. Arenas, Phys. Rev. Lett. 110, 028701 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    X. Zhang, S. Boccaletti, S. Guan, Z. Liu, Phys. Rev. Lett. 114, 038701 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    M. Kivelä, A. Arenas, M. Barthelemy, J.P. Gleeson, Y. Moreno, M.A. Porter, J. Complex Networks 2, 203 (2014)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Chinese Materia Medica, Gansu Provincial Hospital of Traditional Chinese MedicineLanzhouP.R. China
  2. 2.Department of Rehabilitation MedicineGansu Provincial Hospital of Traditional Chinese MedicineLanzhouP.R. China
  3. 3.Department of Rehabilitation and PhysiotherapyGansu Provincial HospitalLanzhouP.R. China

Personalised recommendations