Advertisement

The European Physical Journal Special Topics

, Volume 228, Issue 11, pp 2429–2439 | Cite as

From asynchronous to synchronous chimeras in ecological multiplex network

  • Srilena Kundu
  • Soumen MajhiEmail author
  • Dibakar Ghosh
Regular Article
  • 23 Downloads
Part of the following topical collections:
  1. Diffusion Dynamics and Information Spreading in Multilayer Networks

Abstract

We study the emergence of chimera states in coupled ecological systems consisting of prey–predator patches organized in a framework of multiplex network with regular coupling topology. The nodes in each layer of the multiplex network are modeled by a three-component Hastings–Powell model exhibiting chaotic dynamics. The existence of different dynamical states in each layer namely, incoherent, chimera and coherent states is characterized through the strength of incoherence measurement. Our investigation reveals that due to multiplexing the chimera state in one layer completely overlaps with the chimera state in another layer for a suitable range of the intra-layer coupling strengths. The transition scenario from asynchronous to synchronous chimera states is realized through the computation of the inter-layer synchronization error. Besides nonlocal interaction, a similar phenomenon is observed in the nearest-neighbor as well as in all-to-all interaction topology. Furthermore, the presence of distinct collective dynamical states is portrayed in an appropriate range of the various parameter spaces.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.J. Panaggio, D.M. Abrams, Nonlinearity 28, R67 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    E. Schöll, Eur. Phys. J. Special Topics 225, 891 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    B.K. Bera, S. Majhi, D. Ghosh, M. Perc, Europhys. Lett. 118, 10001 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    S. Majhi, B.K. Bera, D. Ghosh, M. Perc, Phys. Life Rev. 28, 100 (2019)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Kuramoto, D. Battogtokh, Nonlinear Phenom. Complex Syst. 5, 380 (2002)Google Scholar
  6. 6.
    D.M. Abrams, S.H. Strogatz, Phys. Rev. Lett. 93, 174102 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    D.M. Abrams, R. Mirollo, S.H. Strogatz, D.A. Wiley, Phys. Rev. Lett. 101, 084103 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    A.E. Motter, Nat. Phys. 6, 164 (2010)CrossRefGoogle Scholar
  9. 9.
    E.A. Martens, C.R. Laing, S.H. Strogatz, Phys. Rev. Lett. 104, 044101 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    S. Ulonska, I. Omelchenko, A. Zakharova, E. Schöll, Chaos 26, 094825 (2016)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    B.K. Bera, D. Ghosh, P. Parmananda, G.V. Osipov, S.K. Dana, Chaos 27, 073108 (2017)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Z. Faghani, Z. Arab, F. Parastesh, S. Jafari, M. Perc, M. Slavinec, Chaos, Solitons Fractals 114, 306 (2018)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    I. Omelchenko, Y. Maistrenko, P. Hövel, E. Schöll, Phys. Rev. Lett. 106, 234102 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    C. Gu, G. St-Yves, J. Davidsen, Phys. Rev. Lett. 111, 134101 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    I. Omelchenko, O.E. Omelchenko, P. Hövel, E. Schöll, Phys. Rev. Lett. 110, 224101 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    B.K. Bera, D. Ghosh, M. Lakshmanan, Phys. Rev. E 93, 012205 (2016)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    J. Hizanidis, N.E. Kouvaris, G. Zamora-López, A. Daz-Guilera, C.G. Antonopoulos, Sci. Rep. 6, 19845 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    S. Majhi, M. Perc, D. Ghosh, Sci. Rep. 6, 39033 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    B.K. Bera, D. Ghosh, Phys. Rev. E 93, 052223 (2016)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    A. Vullings, J. Hizanidis, I. Omelchenko, P. Hövel, New J. Phys. 16, 123039 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    B.K. Bera, D. Ghosh, T. Banerjee, Phys. Rev. E 94, 012215 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    S. Majhi, M. Perc, D. Ghosh, Chaos 27, 073109 (2017)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    S. Kundu, S. Majhi, B.K. Bera, D. Ghosh, M. Lakshmanan, Phys. Rev. E 97, 022201 (2018)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    S. Majhi, D. Ghosh, Chaos 28, 083113 (2018)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Z. Wei, F. Parastesh, H. Azarnoush, S. Jafari, D. Ghosh, M. Perc, M. Slavinec, Europhys. Lett. 123, 48003 (2018)CrossRefGoogle Scholar
  26. 26.
    A. Yeldesbay, A. Pikovsky, M. Rosenblum, Phys. Rev. Lett. 112, 144103 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    V.K. Chandrasekar, R. Gopal, A. Venkatesan, M. Lakshmanan, Phys. Rev. E 90, 062913 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    K. Premalatha, V.K. Chandrasekar, M. Senthilvelan, M. Lakshmanan, Phys. Rev. E 91, 052915 (2015)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    C.R. Laing, Phys. Rev. E 92, 050904(R) (2015)ADSCrossRefGoogle Scholar
  30. 30.
    Y. Zhu, Z. Zheng, J. Yang, Phys. Rev. E 89, 022914 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    A. Buscarino, M. Frasca, L.V. Gambuzza, P. Hövel, Phys. Rev. E 91, 022817 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    V.V. Makarov, S. Kundu, D.V. Kirsanov, N.S. Frolov, V.A. Maksimenko, D. Ghosh, S.K. Dana, A.E. Hramov, Commun. Nonlinear Sci. Numer. Simul. 71, 118 (2019)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    A. Schmidt, T. Kasimatis, J. Hizanidis, A. Provata, P. Hövel, Phys. Rev. E 95, 032224 (2017)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    T. Kasimatis, J. Hizanidis, A. Provata, Phys. Rev. E 97, 052213 (2018)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    S. Kundu, B.K. Bera, D. Ghosh, M. Lakshmanan, Phys. Rev. E 99, 022204 (2019)ADSCrossRefGoogle Scholar
  36. 36.
    M.R. Tinsley, S. Nkomo, K. Showalter, Nat. Phys. 8, 662 (2012)CrossRefGoogle Scholar
  37. 37.
    E.A. Martens, S. Thutupalli, A. Fourrière, O. Hallatschek, Proc. Natl. Acad. Sci. USA 110, 10563 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    L. Larger, B. Penkovsky, Y. Maistrenko, Phys. Rev. Lett. 111, 054103 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    T. Kapitaniak, P. Kuzma, J. Wojewoda, K. Czolczynski, Y. Maistrenko, Sci. Rep. 4, 6379 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    J. Wojewoda, K. Czolczynski, Y. Maistrenko, T. Kapitaniak, Sci. Rep. 6, 34329 (2016)ADSCrossRefGoogle Scholar
  41. 41.
    J.F. Totz, J. Rode, M.R. Tinsley, K. Showalter, H. Engel, Nat. Phys. 14, 282 (2018)CrossRefGoogle Scholar
  42. 42.
    M. De Domenico, A. Solé-Ribalta, E. Cozzo, M. Kivelä, Y. Moreno, M.A. Porter, S. Gómez, A. Arenas, Phys. Rev. X 3, 041022 (2013)Google Scholar
  43. 43.
    V. Nicosia, G. Bianconi, V. Latora, M. Barthelemy, Phys. Rev. Lett. 111, 058701 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    M. Kivelä, A. Arenas, M. Barthelemy, J.P. Gleeson, Y. Moreno, M.A. Porter, J. Complex Netw. 2, 203 (2014)CrossRefGoogle Scholar
  45. 45.
    S. Boccaletti, G. Bianconi, R. Criado, C.I. del Genio, J. Gómez-Gardeñes, M. Romance, I. Sendiña-Nadal, Z. Wang, M. Zanin, Phys. Rep. 544, 1 (2014)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    R. Sevilla-Escoboza, I. Sendiña-Nadal, I. Leyva, R. Gutiérrez, J.M. Buldú, S. Boccaletti, Chaos 26, 065304 (2016)MathSciNetCrossRefGoogle Scholar
  47. 47.
    L.V. Gambuzza, M. Frasca, J. Gómez-Gardeñes, Europhys. Lett. 110, 20010 (2015)ADSCrossRefGoogle Scholar
  48. 48.
    Z. Wang, L. Wang, A. Szolnoki, M. Perc, Eur. Phys. J. B 88, 124 (2015)ADSCrossRefGoogle Scholar
  49. 49.
    M. Girvan, M.E.J. Newman, Proc. Natl. Acad. Sci. USA 99, 7821 (2002)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    A. Cardillo, M. Zanin, J. Gómez Gardeñes, M. Romance, A. Garcia del Amo, S. Boccaletti, Eur. Phys. J. Special Topics 215, 23 (2013)ADSCrossRefGoogle Scholar
  51. 51.
    S. Pilosof, M.A. Porter, M. Pascual, S. Kéfi, Nat. Ecol. Evol. 1, 0101 (2017)CrossRefGoogle Scholar
  52. 52.
    C.D. Brummitt, R.M. D’Souza, E.A. Leicht, Proc. Natl. Acad. Sci. USA 109, E680 (2012)ADSCrossRefGoogle Scholar
  53. 53.
    B. Bentley, R. Branicky, C.L. Barnes, Y.L. Chew, E. Yemini, E.T. Bullmore, P.E. Vértes, W.R. Schafer, PLoS Comput. Biol. 12, 1 (2016)CrossRefGoogle Scholar
  54. 54.
    F. Battiston, V. Nicosia, M. Chavez, V. Latora, Chaos 27, 047404 (2017)ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    S. Gómez, A. Díaz-Guilera, J. Gómez-Gardeñes, C.J. Pérez-Vicente, Y. Moreno, A. Arenas, Phys. Rev. Lett. 110, 028701 (2013)ADSCrossRefGoogle Scholar
  56. 56.
    S. Ghosh, S. Jalan, Int. J. Bifurc. Chaos 26, 1650120 (2016)CrossRefGoogle Scholar
  57. 57.
    S. Ghosh, A. Kumar, A. Zakharova, S. Jalan, Europhys. Lett. 115, 60005 (2016)ADSCrossRefGoogle Scholar
  58. 58.
    S. Jalan, S. Ghosh, B. Patra, Chaos 27, 101104 (2017)ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    V.A. Maksimenko, V.V. Makarov, B.K. Bera, D. Ghosh, S.K. Dana, M.V. Goremyko, N.S. Frolov, A.A. Koronovskii, A.E. Hramov, Phys. Rev. E 94, 052205 (2016)ADSCrossRefGoogle Scholar
  60. 60.
    N.S. Frolov, V.A. Maksimenko, V.V. Makarov, D.V. Kirsanov, A.E. Hramov, J. Kurths, Phys. Rev. E 98, 022320 (2018)ADSCrossRefGoogle Scholar
  61. 61.
    J. Sawicki, I. Omelchenko, A. Zakharova, E. Schöll, Eur. Phys. J. Special Topics 227, 1161 (2018)ADSCrossRefGoogle Scholar
  62. 62.
    J. Sawicki, I. Omelchenko, A. Zakharova, E. Schöll, Phys. Rev. E 98, 062224 (2018)ADSCrossRefGoogle Scholar
  63. 63.
    D.V. Kasatkin, S. Yanchuk, E. Schöll, V.I. Nekorkin, Phys. Rev. E 96, 062211 (2017)ADSCrossRefGoogle Scholar
  64. 64.
    F. Xu, J. Zhang, M. Jin, S. Huang, T. Fang, Nonlinear Dyn. 94, 775 (2018)CrossRefGoogle Scholar
  65. 65.
    D.V. Kasatkin, V.I. Nekorkin, Chaos 28, 093115 (2018)ADSCrossRefGoogle Scholar
  66. 66.
    A. Bukh, E. Rybalova, N. Semenova, G. Strelkova, V. Anishchenko, Chaos 27, 111102 (2017)ADSMathSciNetCrossRefGoogle Scholar
  67. 67.
    R.G. Andrzejak, G. Ruzzene, I. Malvestio, K. Schindler, E. Schöll, A. Zakharova, Chaos 28, 091101 (2018)ADSMathSciNetCrossRefGoogle Scholar
  68. 68.
    R.G. Andrzejak, G. Ruzzene, I. Malvestio, Chaos 27, 053114 (2017)ADSMathSciNetCrossRefGoogle Scholar
  69. 69.
    A.M. Turing, Philos. Trans. R. Soc. London B 237, 37 (1952)ADSCrossRefGoogle Scholar
  70. 70.
    H. Haken, Synergetics: An Introduction, Springer Series in Synergetics, , Vol. 1 (Springer-Verlag, Berlin, 1977)Google Scholar
  71. 71.
    A.B. Medvinsky, S.V. Petrovskii, I.A. Tikhonova, H. Malchow, B.-L. Li, SIAM Rev. 44, 311 (2002)ADSMathSciNetCrossRefGoogle Scholar
  72. 72.
    S. Kundu, S. Majhi, S.K. Sasmal, D. Ghosh, B. Rakshit, Phys. Rev. E 96, 062212 (2017)ADSCrossRefGoogle Scholar
  73. 73.
    S.K. Sasmal, D. Ghosh, Biosystems 151, 8 (2017)CrossRefGoogle Scholar
  74. 74.
    P.S. Dutta, T. Banerjee, Phys. Rev. E 92, 042919 (2015)ADSCrossRefGoogle Scholar
  75. 75.
    T. Banerjee, P.S. Dutta, A. Zakharova, E. Schöll, Phys. Rev. E 94, 032206 (2016)ADSCrossRefGoogle Scholar
  76. 76.
    S. Kundu, S. Majhi, P. Muruganandam, D. Ghosh, Eur. Phys. J. Special Topics 227, 983 (2018)ADSCrossRefGoogle Scholar
  77. 77.
    X. Tang, T. Yang, I.R. Epstein, Y. Liu, Y. Zhao, Q. Gao, J. Chem. Phys. 141, 024110 (2014)ADSCrossRefGoogle Scholar
  78. 78.
    A. Hastings, T. Powell, Ecology 72, 896 (1991)CrossRefGoogle Scholar
  79. 79.
    R. Gopal, V.K. Chandrasekar, A. Venkatesan, M. Lakshmanan, Phys. Rev. E 89, 052914 (2014)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physics and Applied Mathematics Unit, Indian Statistical InstituteKolkataIndia

Personalised recommendations