Advertisement

The European Physical Journal Special Topics

, Volume 228, Issue 10, pp 2101–2110 | Cite as

Phase noise-induced coherence resonance in three dimension memristive Hindmarsh-Rose neuron model

  • Lulu Lu
  • Chun Bao
  • Mengyan Ge
  • Ying Xu
  • Lijian Yang
  • Xuan Zhan
  • Ya JiaEmail author
Regular Article
  • 38 Downloads
Part of the following topical collections:
  1. Memristor-based Systems: Nonlinearity, Dynamics and Applications

Abstract

Phase noise derives from the phase random variation of signal in many physical or biological systems. Based on a three dimension memristive Hindmarsh-Rose neuron model, the influences of phase noise on the neural dynamic features are studied here. It is found that phase noise (an applied voltage source in the flux-controlled memristor) can induce the different hysteresis loops, and the strong phase noise can destroy the memory characteristic of the memristor. The amplitude, angular frequency and noise intensity of phase noise can obviously make the dynamic modes undergo successive transitions. The coherence resonance is related to the angular frequency of phase noise, and is a common phenomenon that persists for the amplitude of phase noise. These results might provide a possible mechanism behind the resonance phenomenon in nonlinear systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.M. Gonzalez-Miranda, Commun. Nonlinear. Sci. 19, 3229 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    P.G. Ghomsi, F.M.M. Kakmeni, T.C. Kofane, C. Tchawoua, Phys. Lett. A 78, 2813 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    B. Cessac, M. Samuelides, Eur. Biophys. J. 142, 7 (2007)Google Scholar
  4. 4.
    Y. Xu, Y. Jia, J. Ma, H. Tasawar, A. Ahmed, Sci. Rep. 8, 1349 (2018)ADSCrossRefGoogle Scholar
  5. 5.
    E. Yilmaz, V. Baysal, M. Perc, M. Ozer, Sci. China Technol. Sci. 59, 364 (2016)CrossRefGoogle Scholar
  6. 6.
    Y. Xu, Y. Jia, J.B. Kirunda, J. Shen, M. Ge, L. Lu, Q. Pei, Complexity 2018, 3012743 (2018)Google Scholar
  7. 7.
    O. Mahmut, P. Matjaz, U. Muhammet, K. Etem, NeuroReport 21, 338 (2010)CrossRefGoogle Scholar
  8. 8.
    L. Lu, Y. Jia, J.B. Kirunda, Y. Xu, M. Ge, Q. Pei, L. Yang, Nonlinear Dyn. 95, 1673 (2019)CrossRefGoogle Scholar
  9. 9.
    B. Veli, Y. Ergin, O. Mahmut, IEEE 17, 3081 (2017)Google Scholar
  10. 10.
    Y. Xu, Y. Jia, H. Wang, Y. Liu, P. Wang, Y. Zhao, Nonlinear Dyn. 95, 3237 (2019)CrossRefGoogle Scholar
  11. 11.
    L.L. Lu, Y. Jia, Y. Xu, M.Y. Ge, L.J. Yang, X. Zhan, Sci. China Technol. Sci. 62, 427 (2019)CrossRefGoogle Scholar
  12. 12.
    E. Yilmaz, V. Baysal, O. Mahmut, P. Matjaz, Physica A 444, 538 (2016)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    M. Ge, Y. Jia, J.B. Kirunda, Y. Xu, J. Shen, L. Lu, Y. Liu, Q. Pei, X. Zhan, L. Yang, Neurocomputing 320, 60 (2018)CrossRefGoogle Scholar
  14. 14.
    M. Ge, Y. Jia, Y. Xu, L. Lu, H. Wang, Y. Zhao, Appl. Math. Comput. 352, 136 (2019)MathSciNetGoogle Scholar
  15. 15.
    R. Roger, L. Petr, Phys. Rev. E 62, 8427 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    L. Lu, Y. Jia, W. Liu, L. Yang, Complexity 2017, 7628537 (2017)Google Scholar
  17. 17.
    M. Ge, Y. Jia, Y. Xu, L. Yang, Nonlinear Dyn. 91, 515 (2018)CrossRefGoogle Scholar
  18. 18.
    Y.B. Jia, H.G. Gu, Chaos 25, 123124 (2015)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    X.M. Liang, D. Mukeshwar, L. Zhao, Z.H. Liu, Phys. Rev. E 82, 010902 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    F.G. Wu, C.H. Wang, W.Y. Jin, J. Ma, Physica A 469, 81 (2017)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    X.M. Liang, L. Zhao, Phys. Rev. E 24, 1339 (2013)Google Scholar
  22. 22.
    X.Q. Liu, X.L. Yang, Int. J. Mod. Phys. B 32, 1850332 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    L. Yang, W. Liu, M. Yi, C. Wang, Q. Zhu, X. Zhan, Y. Jia, Phys. Rev. E 86, 016209 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    D. Alper, M. Amit, R. Jaijeet, IEEE 47, 655 (2000)Google Scholar
  25. 25.
    R. Behzad, IEEE 31, 331 (2002)Google Scholar
  26. 26.
    L. Chua, IEEE 18, 507 (1971)Google Scholar
  27. 27.
    C. Andre, G. Vincent, O.C. Ryan, B. Karim, F. Stephane, M. Xavier, X. Stephane, Y. Hiroyuki, D. Cyrile, D.M. Neil, B. Manuel, B. Agnes, G. Julie, Nat. Mater. 11, 860 (2012)CrossRefGoogle Scholar
  28. 28.
    L. Chua, Nanotechnology 24, 383001 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    S.F. Mohammad, A. Arash, Neural Process. Lett. 45, 1 (2016)Google Scholar
  30. 30.
    Z.G. Wang, J. Saumil, Nat. Mater. 16, 101 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    M.H. Almoatazbellah, M.S. Noha, G.R. Ahmed, Phys. Rev. E 25, 1530017 (2015)Google Scholar
  32. 32.
    T. Andy, J. Phys. D 46, 093001 (2013)CrossRefGoogle Scholar
  33. 33.
    B. Yunus, K. Firat, G. Koray, Neurocomputing 203, 86 (2016)CrossRefGoogle Scholar
  34. 34.
    B.S. Dmitri, S.S. Gregory, R.S. Duncan, R.S. Williams, Nature 453, 06932 (2008)Google Scholar
  35. 35.
    K. Eva, Fract. Calc, Appl. Anal. 20, 623 (2017)Google Scholar
  36. 36.
    J.L. Hindmarsh, R.M. Rose, Nature 296, 162 (1982)ADSCrossRefGoogle Scholar
  37. 37.
    B.C. Bao, A.H. Hu, H. Bao, Q. Xu, M. Chen, H.G. Wu, Complexity 2018, 3872573 (2018)Google Scholar
  38. 38.
    X.M. Liang, L. Zhao, Z.H. Liu, Phys. Rev. E 84, 031916 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    L. Chua, Appl. Phys. A 102, 765 (2011)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsCentral China Normal UniversityWuhanP.R. China
  2. 2.Institute for Interdisciplinary Research, Jianghan UniversityWuhanP.R. China

Personalised recommendations