The European Physical Journal Special Topics

, Volume 228, Issue 10, pp 2081–2091 | Cite as

Stability diagrams for a memristor oscillator

  • Jason A. C. GallasEmail author
Open Access
Regular Article
Part of the following topical collections:
  1. Memristor-based Systems: Nonlinearity, Dynamics and Applications


The simplest chaotic circuit containing a memristor involves a capacitor C, an inductor L, and two parameters, α and β, characterizing the memristor. Chaos was observed experimentally for three combinations of these parameters. Here, we report high resolution stability diagrams displaying an abundance of tunable ranges of periodic and chaotic self-oscillations for this circuit, in all six possible control planes. We predict dynamically rich and intricate sequences of oscillations that are experimentally accessible in the system.



Open Access funding provided by Max-Planck Society.


  1. 1.
    B. Muthuswamy, L.O. Chua, Int. J. Bifurc. Chaos 20, 1567 (2010)CrossRefGoogle Scholar
  2. 2.
    S. Vaidyanathan, C. Volos, Advances in memristors, memristive devices and systems (Springer, Cham, 2017)Google Scholar
  3. 3.
    A.G. Radwan, M.E. Fouda, On the mathematical modeling of memristor, memcapacitor, and meminductor (Springer, Cham, 2015)Google Scholar
  4. 4.
    A. Adamatzky, L. Chua, Memristor networks (Springer, Cham, 2014)Google Scholar
  5. 5.
    S. Kumar, J.P. Strachan, R.S. Williams, Nature 548, 318 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    S. Kumar, N. Davila, Z. Wang, X. Huang, J.P. Strachan, D. Vine, A.L.D. Kilcoyne, Y. Nishi, R.S. Williams, Nanoscale 9, 1793 (2017)CrossRefGoogle Scholar
  7. 7.
    G. Wang, M. Cui, B. Cai, X. Wang, T. Hu, Math. Prob. Eng. 2015, 561901 (2015)Google Scholar
  8. 8.
    A. Ascoli, S. Slesazeck, H. Mahne, R. Tetzlaff, T. Mikolajick, IEEE Trans. Circuits Syst. 62, 1165 (2015)CrossRefGoogle Scholar
  9. 9.
    L. Chua, Nanotechnology 24, 383001 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    T. Driscoll, Y.V. Pershin, D.N. Basov, M. di Ventra, Appl. Phys. A 102, 885 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    J.M. Ginoux, R. Meucci, S. Euzzor, A. di Garbo, Int. J. Bifurc. Chaos 28, 1850128 (2018)CrossRefGoogle Scholar
  12. 12.
    J.M. Ginoux, C. Letellier, L.O. Chua, Int. J. Bifurc. Chaos 20, 3819 (2010)CrossRefGoogle Scholar
  13. 13.
    C. Bonatto, J.A.C. Gallas, Phys. Rev. Lett. 101, 054101 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    J.A.C. Gallas, Int. J. Bifurc. Chaos 20, 197 (2010)CrossRefGoogle Scholar
  15. 15.
    R. Vitolo, P. Glendinning, J.A.C. Gallas, Phys. Rev. E 84, 016216 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    J.A.C. Gallas, Adv. At. Mol. Opt. Phys. 65, 127 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    G.M. Ramírez-Ávila, J.A.C. Gallas, Phys. Lett. A 375, 143 (2010)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Y. Zhang, X. Zhang, Int. J. Bifurc. Chaos 23, 1350136 (2013)CrossRefGoogle Scholar
  19. 19.
    J. Llibre, C. Valls, J. Nonlinear Math. Phys. 19, 1250029 (2012)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    F. Yuan, G. Wang, X. Wang, Chaos 27, 033103 (2017)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    H. Wu, B. Bao, Z. Liu, Q. Xu, P. Jiang, Nonlinear Dyn. 83, 893 (2016)CrossRefGoogle Scholar
  22. 22.
    L.V. Gambuzza, L. Fortuna, M. Frasca, E. Gale, Int. J. Bifurc. Chaos 25, 1550101 (2015)CrossRefGoogle Scholar
  23. 23.
    A. Buscarino, L. Fortuna, M. Frasca, L.V. Gambuzza, Int. J. Bifurc. Chaos 23, 1330015 (2013)CrossRefGoogle Scholar
  24. 24.
    B. Muthuswamy, Int. J. Bifurc. Chaos 20, 1353 (2010)Google Scholar
  25. 25.
    J.G. Freire, J.A.C. Gallas, Phys. Chem. Chem. Phys. 13, 12191 (2011)CrossRefGoogle Scholar
  26. 26.
    J.A.C. Gallas, Phys. Rev. Lett. 70, 2714 (1993)ADSCrossRefGoogle Scholar
  27. 27.
    E.N. Lorenz, Physica D 237, 1689 (2008)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    W. Façanha, B. Oldeman, L. Glass, Phys. Lett. A 377, 1264 (2013)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    R.E. Francke, T. Pöschel, J.A.C. Gallas, Phys. Rev. E 87, 042907 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    L. Junges, J.A.C. Gallas, Phys. Lett. A 376, 2109 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    J. Bragard, H. Pleiner, O.J. Suarez, P. Vargas, J.A.C. Gallas, D. Laroze, Phys. Rev. E 84, 037202 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    M.R. Gallas, M.R. Gallas, J.A.C. Gallas, Eur. Phys. J. Special Topics 223, 2131 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    A. Sack, J.G. Freire, E. Lindberg, T. Pöschel, J.A.C. Gallas, Sci. Rep. 3, 3350 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    F.F.G. Sousa, R.M. Rubinger, J.C. Sartorelli, H.A. Albuquerque, M.S. Baptista, Chaos 26, 083107 (2016)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    D.W.C. Marcondes, G.F. Comassetto, B.G. Pedro, J.C.C. Vieira, A. Hoff, F. Prebianca, C. Manchein, H.A. Albuquerque, Int. J. Bifurc. Chaos 27, 1750175 (2017)CrossRefGoogle Scholar
  36. 36.
    C. Manchein, H.A. Albuquerque, L.F. Mello, Int. J. Bifurc. Chaos 28, 1830038 (2018)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open AccessThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Max-Planck-Institut für Physik komplexer SystemeDresdenGermany
  2. 2.Complexity Sciences CenterSurfsideUSA
  3. 3.Instituto de Altos EstudosJoão PessoaBrazil

Personalised recommendations