The European Physical Journal Special Topics

, Volume 228, Issue 11, pp 2455–2464 | Cite as

Effects of electromagnetic induction on signal propagation and synchronization in multilayer Hindmarsh-Rose neural networks

  • Mengyan Ge
  • Lulu Lu
  • Ying Xu
  • Xuan Zhan
  • Lijian Yang
  • Ya JiaEmail author
Regular Article
Part of the following topical collections:
  1. Diffusion Dynamics and Information Spreading in Multilayer Networks


The feed-forward neural networks are the basis and have been widely applied on modern deep learning models, wherein connection strength between neurons plays a critical role in weak signal propagation and neural synchronization. In this paper, a four-variable Hindmarsh–Rose (HR) neural model is presented by introducing an additive variable as magnetic flow which changes the membrane potential via a memristor. The improved HR neurons in the feed-forward multilayer (four and eight layers) networks are investigated. The effects of electromagnetic radiation, synaptic weight and noise intensity on the propagation of the subthreshold excitatory postsynaptic current (EPSC) signal and the neural synchronization are discussed. It is found that when the system is in a weak magnetic field, the subthreshold EPSC signal can be successfully transmitted to the post-layers. Moreover, the neural synchronization of each layer is affected by electromagnetic radiation in the network, and with the help of noise the constant input current will transmit to the post-layers in a stable periodic synchronous form. Our findings provide a possible mechanism for enhancing the subthreshold signal propagation and triggering the neural synchronization in the nervous system.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.Q. Guo, C.G. Li, J. Comput. Neurosci. 30, 567 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    G.A. Babu, S.N. Bhukya, R.S. Kumar, in Proceedings of the 8th International Conference on Computer Science & Education, ICCSE 2013, (IEEE, 2013), p. 181Google Scholar
  3. 3.
    M. Diesmann, M.O. Gewaltig, A. Aertsen, Nature 402, 529 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    S. Moldakarimov, M. Bazhenov, T.J. Sejnowski, Proc. Natl. Acad. Sci. 112, 2545 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    H.T. Wang, Y. Chen, Physica A 462, 321 (2016)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    M. Masoliver, C. Masoller, Sci. Rep. 8, 8276 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Yao, C. Ma, C. Wang, M. Yi, R. Gui, Phys. A 492, 1247 (2018)MathSciNetCrossRefGoogle Scholar
  8. 8.
    L.T. Arredondo, C.A. Perez, PLoS One 12, e0186932 (2017)CrossRefGoogle Scholar
  9. 9.
    M. Perc, Phys. Rev. E 72, 016207 (2005)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    E. Yilmaz, M. Ozer, V. Baysal, M. Perc, Sci. Rep. 6, 30914 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    X.J. Sun, J.Z. Lei, M. Perc, J. Kurths, G.R. Chen, Chaos 21, 016110 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    S. Majhi, M. Perc, D. Ghosh, Chaos 27, 073109 (2017)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    J. Teramae, T. Fukai, Biol. Cybern. 99, 105 (2008)CrossRefGoogle Scholar
  14. 14.
    S. Goedeke, M. Diesmann, New J. Phys. 10, 15007 (2008)CrossRefGoogle Scholar
  15. 15.
    Q.Y. Wang, M. Perc, Z.S. Duan, G.R. Chen, Phys. Rev. E 80, 026206 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    D.Q. Guo, C.G. Li, Phys. Rev. E 79, 051921 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    J. Ma, L. Mi, P. Zhou, Y. Xu, T. Hayat, Appl. Math. Comput. 307, 321 (2017)MathSciNetGoogle Scholar
  18. 18.
    Y. Asai, A.E.P. Villa, Brain Res. 1434, 17 (2012)CrossRefGoogle Scholar
  19. 19.
    M. Yi, L.J. Yang, Phys. Rev. E 81, 061924 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    M. Ge, Y. Jia, J.B. Kirunda, Y. Xu, J. Shen, L. Lu, Y. Liu, Q. Pei, X. Zhan, L. Yang, Neurocomputing 320, 60 (2018)CrossRefGoogle Scholar
  21. 21.
    L. Lu, Y. Jia, J.B. Kirunda, Y. Xu, M. Ge, Q. Pei, L. Yang, Nonlinear Dyn. 95, 1673 (2019)CrossRefGoogle Scholar
  22. 22.
    L.O. Chua, IEEE Trans. Circuit Theory 18, 507 (1971)CrossRefGoogle Scholar
  23. 23.
    J. Ma, J. Tang, Nonlinear Dyn. 89, 1569 (2017)CrossRefGoogle Scholar
  24. 24.
    M. Ge, Y. Xu, Z. Zhang, Y. Peng, W. Kang, L. Yang, Y. Jia, Eur. Phys. J. Special Topics 227, 799 (2018)ADSCrossRefGoogle Scholar
  25. 25.
    J. Ma, F. Wu, C. Wang, Int. J. Mod. Phys. B 31, 1650251 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    Y. Xu, Y. Jia, M. Ge, L. Lu, L. Yang, X. Zhan, Neurocomputing 283, 196 (2018)CrossRefGoogle Scholar
  27. 27.
    Z. Rostami, S. Jafari, M. Perc, M. Slavinec, Nonlinear Dyn. 94, 679 (2018)CrossRefGoogle Scholar
  28. 28.
    M. Ge, Y. Jia, Y. Xu, L. Lu, H. Wang, Y. Zhao, Appl. Math. Comput. 352, 136 (2019)MathSciNetGoogle Scholar
  29. 29.
    Y. Xu, Y. Jia, H. Wang, Y. Liu, P. Wang, Y. Zhao, Nonlinear Dyn. 95, 3237 (2019)CrossRefGoogle Scholar
  30. 30.
    D. Hansel, G. Mato, C. Meunier, Europhys. Lett. 23, 367 (1993)ADSCrossRefGoogle Scholar
  31. 31.
    A. Destexhe, Z.F. Mainen, T.J. Sejnowski, J. Comput. Neurosci. 1, 195 (1994)CrossRefGoogle Scholar
  32. 32.
    L. Yang, Y. Jia, M. Yi, ICNC 2, 819 (2010)Google Scholar
  33. 33.
    X. Pei, L. Wilkens, F. Moss, Phys. Rev. Lett. 77, 4679 (1996)ADSCrossRefGoogle Scholar
  34. 34.
    S. Wang, W. Wang, F. Liu, Phys. Rev. Lett. 96, 018103 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    P. Parmananda, G. Santos, M. Rivera, K. Showalter, Phys. Rev. E 71, 031110 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    M. Stimberg, T. Hoch, K. Obermayer, Neurocomputing 70, 1824 (2007)CrossRefGoogle Scholar
  37. 37.
    Y. Wang, J. Ma, Y. Xu, F. Wu, P. Zhou, Int. J. Bifurc. Chaos 27, 1750030 (2017)CrossRefGoogle Scholar
  38. 38.
    M. Ge, Y. Jia, Y. Xu, L. Yang, Nonlinear Dyn. 91, 515 (2018)CrossRefGoogle Scholar
  39. 39.
    B. Bao, A. Hu, Q. Xu, H. Wu, M. Chen, Nonlinear Dyn. 92, 1695 (2018)CrossRefGoogle Scholar
  40. 40.
    L.L. Lu, Y. Jia, Y. Xu, M.Y. Ge, L.J. Yang, X. Zhan, Sci. China Technol. Sci. 62, 427 (2019)CrossRefGoogle Scholar
  41. 41.
    Y. Xu, Y. Jia, J.B. Kirunda, J. Shen, M. Ge, L. Lu, Q. Pei, Complexity 2018, 3012743 (2018)Google Scholar
  42. 42.
    Y. Yao, W. Cao, Q. Pei, C. Ma, M. Yi, Complexity 2018, 879329 (2018)Google Scholar
  43. 43.
    V. Berec, Chaos 86, 75 (2016)MathSciNetGoogle Scholar
  44. 44.
    V. Berec, Eur. Phys. J. Special Topics 225, 7 (2016)ADSCrossRefGoogle Scholar
  45. 45.
    Y. Yao, L. Yang, C. Wang, Q. Liu, R. Gui, J. Xiong, M. Yi, Complexity 2018, 5632650 (2018)Google Scholar
  46. 46.
    Y. Xu, Y. Jia, J. Ma, H. Tasawar, A. Ahmed, Sci. Rep. 8, 1349 (2018)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Biophysics and Department of Physics, Central China Normal UniversityWuhanP.R. China

Personalised recommendations