Advertisement

The European Physical Journal Special Topics

, Volume 228, Issue 10, pp 2065–2080 | Cite as

Dynamical analysis, sliding mode synchronization of a fractional-order memristor Hopfield neural network with parameter uncertainties and its non-fractional-order FPGA implementation

  • Karthikeyan Rajagopal
  • Murat Tuna
  • Anitha Karthikeyan
  • İsmail Koyuncu
  • Prakash Duraisamy
  • Akif AkgulEmail author
Regular Article
  • 1 Downloads
Part of the following topical collections:
  1. Memristor-based Systems: Nonlinearity, Dynamics and Applications

Abstract

Recent developments in the applications of neural networks in various engineering and technology applications have motivated researchers to study the nonlinear behavior of such networks. In this work we investigate a fractional-order Hopfield neural network with memristor synaptic weight. The dynamical properties of the proposed system are examined and the memristor neural network shows hyperchaotic attractors in fractional orders with hidden oscillations. We also propose an adaptive sliding mode control technique to synchronize the proposed fractional-order systems with uncertainties. Numerical simulations are derived to show the effectiveness of the synchronization algorithm. Moreover, the designed chaotic memristor Hopfield neural network system is realized on FPGA using the 4th-order Runge–Kutta (RK4) numerical algorithm. The FPGA-based chaotic memristor HNN is coded in VHDL using the 32-bit IEEE-754-1985 floating point standard. The chaotic memristor neural network designed on FPGA is synthesized and tested using Xilinx ISE. The chip statistics of Xilinx XC6VLX240T-1-FF1156 kit obtained from Place & Route operation for the designed RK4-based system is presented. The operating frequency of newly modeled FPGA-based memristor neural network chaotic signal generator is 231.616 MHz.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Chua, IEEE Trans. Circuit Theory 18, 507 (1971)CrossRefGoogle Scholar
  2. 2.
    L.O. Chua, Sung Mo Kang, Proc. IEEE 64, 209 (1976)MathSciNetGoogle Scholar
  3. 3.
    D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453, 80 (2008)ADSGoogle Scholar
  4. 4.
    S. Shin, K. Kim, S.-M. Kang, IEEE Trans. Nanotechnol. 10, 266 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    Y.V. Pershin, M. Di Ventra, Neural Networks 23, 881 (2010)CrossRefGoogle Scholar
  6. 6.
    J.L. Hindmarsh, R.M. Rose, Nature 296, 162 (1982)ADSCrossRefGoogle Scholar
  7. 7.
    H. Qin, J. Ma, W. Jin, C. Wang, Sci. China Technol. Sci. 57, 936 (2014)CrossRefGoogle Scholar
  8. 8.
    X.-S. Yang, Y. Huang, Chaos Interdiscip, J. Nonlinear Sci. 16, 033114 (2006)Google Scholar
  9. 9.
    X.-S. Yang, Q. Li, Int. J. Bifurc. Chaos 16, 157 (2006)CrossRefGoogle Scholar
  10. 10.
    J.E. Lewis, L. Glass, Int. J. Bifurc. Chaos 01, 477 (1991)CrossRefGoogle Scholar
  11. 11.
    J.E. Lewis, L. Glass, Neural Comput. 4, 621 (1992)CrossRefGoogle Scholar
  12. 12.
    R. Edwards, Phys. D Nonlinear Phenom. 146, 165 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    R. Edwards, L. Glass, Chaos Interdiscip, J. Nonlinear Sci. 10, 691 (2000)Google Scholar
  14. 14.
    T. Mestl, C. Lemay, L. Glass, Phys. D Nonlinear Phenom. 98, 33 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    T. Mestl, E. Plahte, S.W. Omholt, Dyn. Stab. Syst. 10, 179 (1995)CrossRefGoogle Scholar
  16. 16.
    A. Das, P. Das, A.B. Roy, Int. J. Bifurc. Chaos 12, 2271 (2002)CrossRefGoogle Scholar
  17. 17.
    X.-S. Yang, Q. Yuan, Neurocomputing 69, 232 (2005)CrossRefGoogle Scholar
  18. 18.
    V.T. Pham, S. Jafari, S. Vaidyanathan, C. Volos, X. Wang, Sci. China Technol. Sci. 59, 358 (2016)CrossRefGoogle Scholar
  19. 19.
    X. Sun, X. Shi, Sci. China Technol. Sci. 57, 879 (2014)CrossRefGoogle Scholar
  20. 20.
    D. Wang, H.i. Zhao, J. Yu, in 2009 International Conferences on Communications Circuits and Systems (IEEE, 2009), pp. 958–960Google Scholar
  21. 21.
    H. Wang, Y. Yu, G. Wen, S. Zhang, J. Yu, Neurocomputing 154, 15 (2015)CrossRefGoogle Scholar
  22. 22.
    E. Kaslik, S. Sivasundaram, in 2011 International Joint Conference on Neural Networks (IEEE, 2011), pp. 611–618Google Scholar
  23. 23.
    E. Kaslik, S. Sivasundaram, Neural Networks 32, 245 (2012)CrossRefGoogle Scholar
  24. 24.
    A. Boroomand, M.B. Menhaj, Fractional-Order Hopfield Neural Networks (Springer, Berlin, Heidelberg, 2009), pp. 883–890CrossRefGoogle Scholar
  25. 25.
    C. Song, J. Cao, Neurocomputing 142, 494 (2014)CrossRefGoogle Scholar
  26. 26.
    A. Wu, Z. Zeng, X. Song, Neurocomputing 177, 489 (2016)CrossRefGoogle Scholar
  27. 27.
    H. Wu, L. Wang, Y. Wang, P. Niu, B. Fang, Adv. Differ. Equations 2016, 132 (2016)CrossRefGoogle Scholar
  28. 28.
    P. Liu, Z. Zeng, J. Wang, IEEE Trans. Syst. Man, Cybern. Syst. 47, 2279 (2017)CrossRefGoogle Scholar
  29. 29.
    R. Rakkiyappan, J. Cao, G. Velmurugan, IEEE Trans. Neural Networks Learn. Syst. 26, 84 (2015)MathSciNetCrossRefGoogle Scholar
  30. 30.
    G. Velmurugan, R. Rakkiyappan, V. Vembarasan, J. Cao, A. Alsaedi, Neural Networks 86, 42 (2017)CrossRefGoogle Scholar
  31. 31.
    M.F. Tolba, A.M. AbdelAty, N.S. Soliman, L.A. Said, A.H. Madian, A.T. Azar, A.G. Radwan, AEU – Int, J. Electron. Commun. 78, 162 (2017)Google Scholar
  32. 32.
    I. Petráš, Fractional-Order Nonlinear Systems?: Modeling, Analysis and Simulation (Higher Education Press, 2011)Google Scholar
  33. 33.
    A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Phys. D Nonlinear Phenom. 16, 285 (1985)ADSCrossRefGoogle Scholar
  34. 34.
    M.-F. Danca, Nonlinear Dyn. 81, 227 (2015)CrossRefGoogle Scholar
  35. 35.
    J.-J.E. Slotine, W. Li, Applied Nonlinear Control (Prentice Hall, 1991)Google Scholar
  36. 36.
    K. Rajagopal, S. Vaidyanathan, A. Karthikeyan, P. Duraisamy, Electr. Eng. 99, 721 (2017)CrossRefGoogle Scholar
  37. 37.
    B.A. Idowu, U.E. Vincent, A.N. Njah, Chaos Solitons Fractals 39, 2322 (2009)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    S. Vaidyanathan, K. Rajagopal, Int. J. Signal Syst. Control Eng. Appl. 4, 55 (2011)Google Scholar
  39. 39.
    V. Sundarapan, R. Karthikeya, Int. J. Soft Comput. 6, 111 (2011)CrossRefGoogle Scholar
  40. 40.
    V. Sundarapan, R. Karthikeya, J. Eng. Appl. Sci. 7, 45 (2012)Google Scholar
  41. 41.
    S.S. Majidabad, H.T. Shandiz, J. Control Syst. Eng. 1, 1 (2013)CrossRefGoogle Scholar
  42. 42.
    S. Vaidyanathan, Arch. Control Sci. 27, 409 (2017)MathSciNetCrossRefGoogle Scholar
  43. 43.
    O.S. Onma, O.I. Olusola, A.N. Njah, J. Nonlinear Dyn. 2014, 1 (2014)CrossRefGoogle Scholar
  44. 44.
    B. Wang, Y. Li, D.L. Zhu, Int. J. Control Autom. 8, 425 (2015)CrossRefGoogle Scholar
  45. 45.
    C. Yin, S. Dadras, S. Zhong, Y. Chen, Appl. Math. Model. 37, 2469 (2013)MathSciNetCrossRefGoogle Scholar
  46. 46.
    H. Liu, J. Yang, Entropy 17, 4202 (2015)ADSCrossRefGoogle Scholar
  47. 47.
    S. Wang, Y. Yu, M. Diao, Phys. A Stat. Mech. Appl. 389, 4981 (2010)CrossRefGoogle Scholar
  48. 48.
    K. Rajagopal, L. Guessas, A. Karthikeyan, A. Srinivasan, G. Adam, Complexity 2017, 1 (2017)Google Scholar
  49. 49.
    K. Rajagopal, A. Karthikeyan, A.K. Srinivasan, Nonlinear Dyn. 87, 2281 (2017)CrossRefGoogle Scholar
  50. 50.
    P. Muthukumar, P. Balasubramaniam, K. Ratnavelu, Int. J. Dyn. Control 5, 115 (2017)MathSciNetCrossRefGoogle Scholar
  51. 51.
    X. Song, S. Song, I.T. Balsera, L. Liu, L. Zhang, J. Control Sci. Eng. 2017, 1 (2017)CrossRefGoogle Scholar
  52. 52.
    Y. Toopchi, J. Wang, Entropy 16, 6539 (2014)ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    I. Koyuncu, Adv. Electr. Comput. Eng. 18, 79 (2018)CrossRefGoogle Scholar
  54. 54.
    I. Koyuncu, M. Tuna, M. Alçn, in International Eurasian Conference on Science Engineering Technology (EurasianSciEnTech 2018), November 22–23, 2018 (Ankara, Turkey, 2018), pp. 2532–2541Google Scholar
  55. 55.
    A. Senouci, H. Bouhedjeur, K. Tourche, A. Boukabou, AEU – Int. J. Electron. Commun. 82, 211 (2017)CrossRefGoogle Scholar
  56. 56.
    İ. Koyuncu, A. Turan Özcerit, Comput. Electr. Eng. 58, 203 (2017)CrossRefGoogle Scholar
  57. 57.
    İ. Koyuncu, İ. Sahin, C. Gloster, N.K. Sartekin, J. Circuits, Syst. Comput. 26, 1750015 (2017)CrossRefGoogle Scholar
  58. 58.
    Ü. Çavusoǧlu, A. Akgül, S. Kaçar, İ. Pehlivan, A. Zengin, Secur. Commun, Networks 9, 1285 (2016)Google Scholar
  59. 59.
    M. Tuna, C.B. Fidan, İ. Koyuncu, The Chaos-Based Dual Entropy Core TRNG On FPGA: VHDL CODES of Chaotic Systems (LAMBERT Academic Publication (LAP), 2019)Google Scholar
  60. 60.
    K. Rajagopal, A. Karthikeyan, P. Duraisamy, Complexity 2017, 1 (2017)Google Scholar
  61. 61.
    I. Koyuncu, Int. J. Intell. Syst. Appl. Eng. 4, 33 (2016)CrossRefGoogle Scholar
  62. 62.
    İ. Koyuncu, Hİ. Seker, Sak. Univ. J. Sci. 23, 859 (2019)Google Scholar
  63. 63.
    K. Rajagopal, A. Akgul, S. Jafari, A. Karthikeyan, I. Koyuncu, Chaos Solitons Fractals 103, 476 (2017)ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    M. Alçn, İ. Pehlivan, İ. Koyuncu, Opt. – Int. J. Light Electron Opt. 127, 5500 (2016)CrossRefGoogle Scholar
  65. 65.
    M. Tuna, C.B. Fidan, Opt. – Int. J. Light Electron Opt. 127, 11786 (2016)CrossRefGoogle Scholar
  66. 66.
    I. Koyuncu, A.T. Ozcerit, I. Pehlivan, Nonlinear Dyn. 77, 49 (2014)CrossRefGoogle Scholar
  67. 67.
    M.S. Azzaz, C. Tanougast, S. Sadoudi, R. Fellah, A. Dandache, Commun. Nonlinear Sci. Numer. Simul. 18, 1792 (2013)ADSMathSciNetCrossRefGoogle Scholar
  68. 68.
    Q. Lai, X.-W. Zhao, K. Rajagopal, G. Xu, A. Akgul, E. Guleryuz, Pramana 90, 6 (2018)ADSCrossRefGoogle Scholar
  69. 69.
    I. Koyuncu, A.T. Ozcerit, I. Pehlivan, Optoelectron. Adv. Mater. Rapd Commun. 7, 635 (2013)Google Scholar
  70. 70.
    K. Rajagopal, A. Karthikeyan, A. Srinivasan, Nonlinear Dyn. 91, 1491 (2018)CrossRefGoogle Scholar
  71. 71.
    S. Sadoudi, M.S. Azzaz, M. Djeddou, M. Benssalah, Int. J. Nonlinear Sci. 7, 1749 (2009)Google Scholar
  72. 72.
    A. Akgul, H. Calgan, I. Koyuncu, I. Pehlivan, A. Istanbullu, Nonlinear Dyn. 84, 481 (2015)CrossRefGoogle Scholar
  73. 73.
    E. Tlelo-Cuautle, A.D. Pano-Azucena, J.J. Rangel-Magdaleno, V.H. Carbajal-Gomez, G. Rodriguez-Gomez, Nonlinear Dyn. 85, 2143 (2016)CrossRefGoogle Scholar
  74. 74.
    K. Rajagopal, S. Jafari, G. Laarem, Pramana 89, 92 (2017)ADSCrossRefGoogle Scholar
  75. 75.
    M. Tuna, M. Alçn, İ. Koyuncu, C.B. Fidan, İ. Pehlivan, Microprocess. Microsyst. 66, 72 (2019)CrossRefGoogle Scholar
  76. 76.
    M. Alcin, I. Koyuncu, M. Tuna, M. Varan, I. Pehlivan, Int. J. Circuit Theory Appl. 47, 365 (2019)CrossRefGoogle Scholar
  77. 77.
    B. Karakaya, A. Gülten, M. Frasca, Chaos Solitons Fractals 119, 143 (2019)ADSCrossRefGoogle Scholar
  78. 78.
    J.C. Butcher, Numerical Methods for Ordinary Differential Equations (J (Wiley, 2008)Google Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Karthikeyan Rajagopal
    • 1
  • Murat Tuna
    • 2
  • Anitha Karthikeyan
    • 1
  • İsmail Koyuncu
    • 3
  • Prakash Duraisamy
    • 1
  • Akif Akgul
    • 4
    Email author
  1. 1.Center for Nonlinear Dynamics, Defence UniversityBishoftuEthiopia
  2. 2.Department of ElectricalTechnical Sciences Vocational School, Krklareli UniversityKrklareliTurkey
  3. 3.Department of Electrical and Electronics EngineeringAfyon Kocatepe UniversityAfyonTurkey
  4. 4.Department of Electrical and Electronics EngineeringSakarya University of Applied SciencesSakaryaTurkey

Personalised recommendations