Advertisement

The European Physical Journal Special Topics

, Volume 228, Issue 10, pp 2035–2051 | Cite as

Coexistence of attractors in a simple chaotic oscillator with fractional-order-memristor component: analysis, FPGA implementation, chaos control and synchronization

  • Karthikeyan Rajagopal
  • Sifeu Takougang Kingni
  • Abdul Jalil M. Khalaf
  • Yasser Shekofteh
  • Fahimeh NazarimehrEmail author
Regular Article
  • 2 Downloads
Part of the following topical collections:
  1. Memristor-based Systems: Nonlinearity, Dynamics and Applications

Abstract

In this paper, the simplest chaotic oscillator with fractional-order-memristor component (SCOF) is proposed. Dynamical characteristics of the proposed chaotic oscillator are investigated both analytically and numerically. The results indicate that the proposed chaotic oscillator possesses novel dynamical characteristics: double-scroll chaotic attractor, four-scroll chaotic attractor and coexisting attractors. The proposed SCOF system is implemented in field programmable gate arrays (FPGA) using the Adomian decomposition method to verify the numerical simulation results. Finally, control and synchronization of the simple chaotic oscillator with fractional-order-memristor component is studied using the linear feedback control and the unidirectional linear error feedback coupling scheme, respectively.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Feng, J. Pu, Z. Wei, Eur. Phys. J. Special Topics 224, 1593 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    Z. Wei, W. Zhang, Z. Wang, M. Yao, Int. J. Bifurc. Chaos 25, 1550028 (2015)CrossRefGoogle Scholar
  3. 3.
    N. Fataf, S.K. Palit, S. Mukherjee, M. Said, D.H. Son, S. Banerjee, Eur. Phys. J. Plus 132, 492 (2017)CrossRefGoogle Scholar
  4. 4.
    J.C. Sprott, Phys. Rev. E 50, R647 (1994)ADSCrossRefGoogle Scholar
  5. 5.
    A. Bayani, K. Rajagopal, A.J.M. Khalaf, S. Jafari, G. Leutcho, J. Kengne, Phys. Lett. A 383, 1450 (2019)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Ü. Çavusoǧlu, S. Panahi, A. Akgül, S. Jafari, S. Kaçar, Analog Integr. Circ. Sig. Process. 98, 85 (2019)CrossRefGoogle Scholar
  7. 7.
    X. Wang, S.T. Kingni, C. Volos, V.T. Pham, D. Vo Hoang, S. Jafari, Int. J. Electron. 106, 109 (2019)CrossRefGoogle Scholar
  8. 8.
    G. Chen, T. Ueta, Int. J. Bifurc. Chaos 9, 1465 (1999)CrossRefGoogle Scholar
  9. 9.
    O.E. Rössler, Phys. Lett. A 57, 397 (1976)ADSCrossRefGoogle Scholar
  10. 10.
    S. Jafari, J.C. Sprott, Chaos Solitons Fractals 57, 79 (2013)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    S. Jafari, J.C. Sprott, S.M.R. Hashemi Golpayegani, Phys. Lett. A 377, 699 (2013)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    M. Molaie, S. Jafari, J.C. Sprott, S.M.R. Hashemi Golpayegani, Int. J. Bifurc. Chaos 23, 1350188 (2013)CrossRefGoogle Scholar
  13. 13.
    X. Wang, G. Chen, Commun. Nonlinear Sci. Numer. Simul. 17, 1264 (2012)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Z. Wei, Phys. Lett. A 376, 102 (2011)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    K. Barati, S. Jafari, J.C. Sprott, V.-T. Pham, Int. J. Bifurc. Chaos 26, 1630034 (2016)CrossRefGoogle Scholar
  16. 16.
    T. Gotthans, J.C. Sprott, J. Petrzela, Int. J. Bifurc. Chaos 26, 1650137 (2016)CrossRefGoogle Scholar
  17. 17.
    T. Gotthans, J. Petržela, Nonlinear Dyn. 81, 1143 (2015)CrossRefGoogle Scholar
  18. 18.
    R.C. Hilborn, Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers (Oxford University Press, Oxford, 2000)Google Scholar
  19. 19.
    M. Kiseleva, N. Kuznetsov, G. Leonov, Hidden and self-excited attractors in electromechanical systems with and without equilibria, https://arXiv:1601.06909 (2016)
  20. 20.
    N. Kuznetsov, O. Kuznetsova, G. Leonov, V. Vagaitsev, Analytical-numerical localization of hidden attractor in electrical Chua’s circuit, in Informatics in Control, Automation and Robotics (Springer, 2013), pp. 149–158Google Scholar
  21. 21.
    N. Kuznetsov, G. Leonov, T. Mokaev, S. Seledzhi, T. Simos, C. Tsitouras, Hidden attractor in the Rabinovich system, Chua circuits and PLL, in AIP Conference Proceedings (2016), p. 210008Google Scholar
  22. 22.
    S. Jafari, F. Nazarimehr, J.C. Sprott, S.M.R. Hashemi Golpayegani, Int. J. Bifurc. Chaos 25, 1550182 (2015)CrossRefGoogle Scholar
  23. 23.
    S. Jafari, J.C. Sprott, F. Nazarimehr, Eur. Phys. J. Special Topics 224, 1469 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    F. Nazarimehr, S. Jafari, S.M.R.H. Golpayegani, J. Sprott, Int. J. Bifurc. Chaos 27, 1750023 (2017)CrossRefGoogle Scholar
  25. 25.
    B. Bao, A. Hu, H. Bao, Q. Xu, M. Chen, H. Wu, Complexity 2018, 3872573 (2018)Google Scholar
  26. 26.
    B. Bao, P. Wu, H. Bao, H. Wu, X. Zhang, M. Chen, Chaos Solitons Fractals 109, 146 (2018)ADSCrossRefGoogle Scholar
  27. 27.
    B. Bao, P. Wu, H. Bao, Q. Xu, M. Chen, Chaos Solitons Fractals 106, 161 (2018)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453, 80 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    L. Chua, I.E.E.E. Trans, Circuit Theory 18, 507 (1971)CrossRefGoogle Scholar
  30. 30.
    L. Wang, Z. Zeng, M.-F. Ge, J. Hu, Neural Networks 105, 65 (2018)CrossRefGoogle Scholar
  31. 31.
    Q. Xu, Q. Zhang, B. Bao, Y. Hu, IEEE Access 5, 21039 (2017)CrossRefGoogle Scholar
  32. 32.
    Q. Xu, Q. Zhang, H. Qian, H. Wu, B. Bao, Int. J. Circuit Theory Appl. 46, 1917 (2018)CrossRefGoogle Scholar
  33. 33.
    D. Biolek, Z. Biolek, V. Biolková, AEU Int. J. Electron. Commun. 97, 263 (2018)CrossRefGoogle Scholar
  34. 34.
    D. Biolek, Z. Biolek, V. Biolkova, Radioengineering 20, 228 (2011)Google Scholar
  35. 35.
    Z. Biolek, D. Biolek, V. Biolkova, Radioengineering 18, 210 (2009)Google Scholar
  36. 36.
    Q. Lai, A. Akgul, X.-W. Zhao, H. Pei, Int. J. Bifurc. Chaos 27, 1750142 (2017)CrossRefGoogle Scholar
  37. 37.
    Z. Wang, A. Akgul, V.-T. Pham, S. Jafari, Nonlinear Dyn. 89, 1877 (2017)CrossRefGoogle Scholar
  38. 38.
    Y. Tang, H.R. Abdolmohammadi, A.J.M. Khalaf, Y. Tian, T. Kapitaniak, Pramana 91, 11 (2018)ADSCrossRefGoogle Scholar
  39. 39.
    Z. Wang, H.R. Abdolmohammadi, F.E. Alsaadi, T. Hayat, V.-T. Pham, Chaos Solitons Fractals 110, 252 (2018)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Z. Wei, V.-T. Pham, A.J.M. Khalaf, J. Kengne, S. Jafari, Int. J. Bifurc. Chaos 28, 1850085 (2018)CrossRefGoogle Scholar
  41. 41.
    A.J.M.K. Yan-Xia Tang, K. Rajagopal, V.-T. Pham, S. Jafari, Y. Tian, Chin. Phys. B 27, 40502 (2018)CrossRefGoogle Scholar
  42. 42.
    C. Li, J.C. Sprott, Phys. Lett. A 382, 581 (2018)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    C. Li, J.C. Sprott, W. Hu, Y. Xu, Int. J. Bifurc. Chaos 27, 1750160 (2017)CrossRefGoogle Scholar
  44. 44.
    V. Lakshmikantham, A. Vatsala, Nonlinear Anal.: Theory Methods Appl. 69, 2677 (2008)CrossRefGoogle Scholar
  45. 45.
    C. Li, K. Su, L. Wu, J. Comput. Nonlinear Dyn. 8, 031005 (2013)CrossRefGoogle Scholar
  46. 46.
    C. Li, J. Xiong, W. Li, Y. Tong, Y. Zeng, Indian J. Phys. 87, 673 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    C. Li, J. Zhang, Int. J. Syst. Sci. 47, 2440 (2016)CrossRefGoogle Scholar
  48. 48.
    Q. Xu, M. Shi, Z. Wang, Chaos: Interdisciplinary, J. Nonlinear Sci. 26, 084301 (2016)Google Scholar
  49. 49.
    M. Borah, B.K. Roy, ISA Trans. 82, 2 (2018)CrossRefGoogle Scholar
  50. 50.
    A. Radwan, K. Moaddy, I. Hashim, Amplitude modulation and synchronization of fractional-order memristor-based Chua’s circuit, in Abstract and Applied Analysis (Hindawi, 2013), Vol. 2013MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Y. Yu, Z. Wang, Int. J. Bifurc. Chaos 28, 1850091 (2018)CrossRefGoogle Scholar
  52. 52.
    K. Rajagopal, S. Jafari, A. Karthikeyan, A. Srinivasan, B. Ayele, Circuits Syst, Signal Process. 39, 3702 (2018)Google Scholar
  53. 53.
    K. Rajagopal, A. Akgul, S. Jafari, B. Aricioglu, Nonlinear Dyn. 91, 957 (2018)Google Scholar
  54. 54.
    B. Muthuswamy, S. Banerjee, A Route to Chaos Using FPGAs (Springer, 2015)Google Scholar
  55. 55.
    E. Tlelo-Cuautle, A. Pano-Azucena, J. Rangel-Magdaleno, V. Carbajal-Gomez, G. Rodriguez-Gomez, Nonlinear Dyn. 85, 2143 (2016)CrossRefGoogle Scholar
  56. 56.
    E. Tlelo-Cuautle, V. Carbajal-Gomez, P. Obeso-Rodelo, J. Rangel-Magdaleno, J.C. Nuñez-Perez, Nonlinear Dyn. 82, 1879 (2015)CrossRefGoogle Scholar
  57. 57.
    E. Tlelo-Cuautle, J. Rangel-Magdaleno, A. Pano-Azucena, P. Obeso-Rodelo, J.C. Nuñez-Perez, Commun. Nonlinear Sci. Numer. Simul. 27, 66 (2015)ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    K. Rajagopal, A. Karthikeyan, P. Duraisamy, Complexity 2017, 8979408 (2017)Google Scholar
  59. 59.
    D. Valli, B. Muthuswamy, S. Banerjee, M. Ariffin, A. Wahab, K. Ganesan, C.K. Subramaniam, J. Kurths, Eur. Phys. J. Special Topics 223, 1465 (2014)ADSCrossRefGoogle Scholar
  60. 60.
    K. Rajagopal, A. Karthikeyan, A.K. Srinivasan, Nonlinear Dyn. 87, 2281 (2017)CrossRefGoogle Scholar
  61. 61.
    M.F. Tolba, L.A. Said, A.H. Madian, A.G. Radwan, FPGA implementation of fractional-order integrator and differentiator based on Grünwald Letnikov’s definition, in 2017 29th International Conference on Microelectronics (ICM) (2017), pp. 1–4Google Scholar
  62. 62.
    M. Fouda, A. Radwan, J. Fractional Calculus Appl. 4, 1 (2013)Google Scholar
  63. 63.
    H.M. Baskonus, H. Bulut, Open Math. 13, 547 (2015)MathSciNetCrossRefGoogle Scholar
  64. 64.
    C. Sánchez-López, V.H. Carbajal-Gómez, M. Carrasco-Aguilar, I. Carro-Perez, Complexity 2018, 2806976 (2018)CrossRefGoogle Scholar
  65. 65.
    L. Teng, H.H. Iu, X. Wang, X. Wang, Nonlinear Dyn. 77, 231 (2014)CrossRefGoogle Scholar
  66. 66.
    K. Diethelm, N.J. Ford, J. Math. Anal. Appl. 265, 229 (2002)MathSciNetCrossRefGoogle Scholar
  67. 67.
    A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Physica D 16, 285 (1985)ADSMathSciNetCrossRefGoogle Scholar
  68. 68.
    K. Diethelm, A.D. Freed, Forschung und wissenschaftliches Rechnen 1999, 57 (1998)Google Scholar
  69. 69.
    R. Garrappa, Predictor-corrector PECE method for fractional differential equations, MATLAB Central File Exchange [File ID: 32918] (2011)Google Scholar
  70. 70.
    H. Jahanshahi, K. Rajagopal, A. Akgul, N.N. Sari, H. Namazi, S. Jafari, Int. J. Non-Linear Mech. 107, 126 (2018)ADSCrossRefGoogle Scholar
  71. 71.
    A. Karthikeyan, K. Rajagopal, Complexity 2017, 3815146 (2017)MathSciNetCrossRefGoogle Scholar
  72. 72.
    K. Rajagopal, F. Nazarimehr, A. Karthikeyan, A. Srinivasan, S. Jafari, Asian J. Control 20, 1979 (2018)MathSciNetCrossRefGoogle Scholar
  73. 73.
    K. Rajagopal, S. Jafari, G. Laarem, Pramana 89, 92 (2017)ADSCrossRefGoogle Scholar
  74. 74.
    G. Adomian, Math. Comput. Modell. 13, 17 (1990)CrossRefGoogle Scholar
  75. 75.
    R. Caponetto, S. Fazzino, Int. J. Bifurc. Chaos 23, 1350050 (2013)CrossRefGoogle Scholar
  76. 76.
    S. He, K. Sun, H. Wang, Entropy 17, 8299 (2015)ADSCrossRefGoogle Scholar
  77. 77.
    S.-B. He, K.-H. Sun, H.-H. Wang, Acta Phys. Sin. 63, 030502 (2014)Google Scholar
  78. 78.
    T. Wang, N. Jia, Appl. Math. Comput. 218, 7231 (2012)MathSciNetGoogle Scholar
  79. 79.
    Y. Luo, Y. Chen, H.-S. Ahn, Y. Pi, Control Eng. Pract. 18, 1022 (2010)CrossRefGoogle Scholar
  80. 80.
    A. Razminia, V.J. Majd, D. Baleanu, Adv. Difference Equ. 2011, 15 (2011)CrossRefGoogle Scholar
  81. 81.
    A. Nourian, S. Balochian, Pramana 86, 1401 (2016)ADSCrossRefGoogle Scholar
  82. 82.
    S. Bowong, F.M. Kakmeni, Chaos Solitons Fractals 21, 999 (2004)ADSMathSciNetCrossRefGoogle Scholar
  83. 83.
    M.S. Couceiro, N.F. Ferreira, J.T. Machado, Commun. Nonlinear Sci. Numer. Simul. 15, 895 (2010)ADSCrossRefGoogle Scholar
  84. 84.
    H. Delavari, R. Ghaderi, A. Ranjbar, S. Momani, Commun. Nonlinear Sci. Numer. Simul. 15, 963 (2010)ADSMathSciNetCrossRefGoogle Scholar
  85. 85.
    Z.M. Odibat, N. Corson, M. Aziz-Alaoui, C. Bertelle, Int. J. Bifurc. Chaos 20, 81 (2010)CrossRefGoogle Scholar
  86. 86.
    D. Chen, R. Zhang, J.C. Sprott, X. Ma, Nonlinear Dyn. 70, 1549 (2012)CrossRefGoogle Scholar
  87. 87.
    D. Cafagna, G. Grassi, Commun. Nonlinear Sci. Numer. Simul. 19, 2919 (2014)ADSMathSciNetCrossRefGoogle Scholar
  88. 88.
    D. Cafagna, G. Grassi, Int. J. Bifurc. Chaos 21, 955 (2011)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Karthikeyan Rajagopal
    • 1
    • 2
  • Sifeu Takougang Kingni
    • 3
  • Abdul Jalil M. Khalaf
    • 4
  • Yasser Shekofteh
    • 5
  • Fahimeh Nazarimehr
    • 6
    Email author
  1. 1.Centre for Non-Linear Dynamics, Defence UniversityBishoftuEthiopia
  2. 2.Institute of Energy, Mekelle UniversityMek’eleEthiopia
  3. 3.Department of MechanicalPetroleum and Gas Engineering, Faculty of Mines and Petroleum Industries, University of MarouaMarouaCameroon
  4. 4.Ministry of Higher Education and Scientific ResearchBaghdadIraq
  5. 5.Faculty of Computer Science and Engineering, Shahid Beheshti UniversityTehranIran
  6. 6.Department of Biomedical EngineeringAmirkabir University of TechnologyTehranIran

Personalised recommendations