The European Physical Journal Special Topics

, Volume 228, Issue 9, pp 1767–1780 | Cite as

Experimental and analytical periodic motions in a first-order nonlinear circuit system

  • Yan LiuEmail author
  • Kai Ma
  • Hao He
  • Qiang Huang
Regular Article Topical issue
Part of the following topical collections:
  1. Periodic Motions and Chaos in Nonlinear Dynamical Systems


In this paper, the analytical solution of a first-order nonlinear circuit is obtained through the generalized harmonic method. The analytical solutions of periodic motions are firstly expressed by finite Fourier series. Both the stability and bifurcations of the nonlinear system with a sinusoidal power-supply are studied by the eigenvalues of the system matrix. In order to verify the analytical solution, the researchers compared the spectrums and waveforms obtained from the analytical model, the simulation model and the circuit. The comparison of the spectrum shows the generalized harmonic balance method can describe the amplitude and phase of the nonlinear circuit more precisely. The comparison of the waveform indicates the output waveform from the simulation model have a good agreement with the results obtained from the analytical model. In the real circuit system, little errors on the output voltage amplitude and response speed maybe due to the nonlinear elements in the circuit and intrinsic voltage attenuation of the chips.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Frey, O. Norman, in Proceeding of IEEE International Symposium on Circuits and Systems, New Orleans, 1990 (IEEE, 1990)p. 926Google Scholar
  2. 2.
    D. Zhou, W. Cai, W. Zhang, IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 46, 8 (1999)Google Scholar
  3. 3.
    E. Gad, R. Khazaka, M. Nakhla, R. Griffith, in Proceeding of the IEEE MTT-S International Microwave Symposium, Boston, 1999 (IEEE, IEEE MTT-S Int. Microwave Symp. Dig., 2000), p. 83Google Scholar
  4. 4.
    X. Li, B. Hu, X.T. Ling, X. Zeng, IEEE Trans. Circuits Syst. I: Fundam. 49, 5 (2002)CrossRefGoogle Scholar
  5. 5.
    W.Y. Gong, R.X. Gong, H. Li, Univ. J. Guangxi 33 (2008)Google Scholar
  6. 6.
    M.A.Z. Raja, A. Mehmood, S.A. Niazi, S.M. Muslim, Neural Comput. Appl. 30, 6 (2018)Google Scholar
  7. 7.
    H. Khan, S.J. Liao, R.N. Mohapatra, K. Vajravelu, Commun. Nonlinear Sci. Numer. Simul. 14, 7 (2009)CrossRefGoogle Scholar
  8. 8.
    W. Marszalek, Z. Trzaska, in Proceeding of IEEE International Midwest Symposium on Circuits and Systems (IEEE, MWSCAS 2014, 2014), p. 426Google Scholar
  9. 9.
    F. Tajaddodianfar, M.R.H. Yazdi, H.N. Pishkenari, Microsyst. Technol. 23, 6 (2017)CrossRefGoogle Scholar
  10. 10.
    I. Pakar, M. Bayat, M. Bayat, Proc. Inst. Mech. Eng. E: J. Process Mech. Eng. 230, 1 (2016)Google Scholar
  11. 11.
    A.C.J. Luo, Continuous dynamical systems (Higher Education Press, Beijing, 2012)Google Scholar
  12. 12.
    A.C.J. Luo, J.Z. Huang, J. Vib. Control 18, 11 (2012)CrossRefGoogle Scholar
  13. 13.
    A.C.J. Luo, J.Z. Huang, Int. J. Bifurc. Chaos 22, 4 (2012)CrossRefGoogle Scholar
  14. 14.
    Y.Y. Xu, A.C.J. Luo, Z.B. Chen, Chaos Solitons Fractals 97 (2017)Google Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mechanical Engineering, Northwestern Polytechnical UniversityXi’anP.R. China

Personalised recommendations