Advertisement

The European Physical Journal Special Topics

, Volume 228, Issue 9, pp 1747–1765 | Cite as

Periodic motions to chaos in a 1-dimensional, time-delay, nonlinear system

  • Siyuan Xing
  • Albert C. J. LuoEmail author
Regular Article Topical issue
  • 10 Downloads
Part of the following topical collections:
  1. Periodic Motions and Chaos in Nonlinear Dynamical Systems

Abstract

In this paper, periodic motions varying with excitation strength in a 1-dimensional, time-delay, nonlinear dynamical system are studied through a semi-analytical method. With varying excitation strength, a global order of bifurcation trees of periodic motions is given by G1(S)G1(A)G3(S)G2(A) …Gm(A)G2m+1(S)◁ … (m = 1,2, …) where Gm(A) is for the bifurcation tree of asymmetric period-m motions to chaos, and G2m+1(S) is for the bifurcation tree of symmetric period-(2m + 1) motions to chaos. On the global bifurcation scenario, periodic motions are determined through specific mapping structures, and the corresponding stability and bifurcation of periodic motions are determined by eigenvalue analysis. Numerical simulations of periodic motions are carried out to verify analytical predictions. Phase trajectories and harmonic amplitudes of periodic motions are presented for a better understanding of the 1-dimensional time-delay system. Even for weak excitation, the traditional methods still cannot be applied to such a time-delay nonlinear system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.Y. Xing, A.C.J. Luo, J. Int, Bifurc. Chaos, accepted (2018)Google Scholar
  2. 2.
    M.C. Mackey, D. Glass, Science 197, 287 (1977)ADSCrossRefGoogle Scholar
  3. 3.
    A. Namajūnas, K. Pyragas, A. Tamaševičius, Phys. Lett. A 201, 42 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    K. Ikeda, H. Daido, Phys. Rev. Lett. 45, 709 (1980)ADSCrossRefGoogle Scholar
  5. 5.
    K. Ikeda, K. Matsumoto, Physica D 29, 223 (1987)ADSCrossRefGoogle Scholar
  6. 6.
    V. Krishnaveni, K. Sathiyanathan, J. Appl. Nonlinear Dyn. 3, 227 (2014)CrossRefGoogle Scholar
  7. 7.
    M. Akhmet, Discontin. Nonlinearity Complex. 3, 19 (2014)CrossRefGoogle Scholar
  8. 8.
    A. Bernstein, R. Rand, J. Appl. Nonlinear Dyn. 5, 337 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    J.H. Yang, M.A.F. Sanjun, C.J. Wang, H. Zhu, J. Appl. Nonlinear Dyn. 2, 397 (2013)CrossRefGoogle Scholar
  10. 10.
    C. Jeevarathinam, S. Rajasekar, M.A.F. Sanjun, J. Appl. Nonlinear Dyn. 4, 391 (2015)CrossRefGoogle Scholar
  11. 11.
    H.Y. Hu, E.H. Dowell, L.N. Virgin, Nonlinear Dyn. 15, 311 (1998)CrossRefGoogle Scholar
  12. 12.
    A. Mondal, N. Islam, J. Appl. Nonlinear Dyn. 5, 441 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    N. MacDonald, J. Sounds Vib. 186, 649 (1995)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    A.Y.T. Leung, Z. Guo, J. Vib. Control 20, 501 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    S.M. Sah, R.H. Rand, J. Appl. Nonlinear Dyn. 5, 471 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    A. Bernstein, R. Rand, J. Appl. Nonlinear Dyn. 7, 349 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    M. Lakshmanan, D.V. Senthikumar, Dynamics of nonlinear time-delay systems (Springer-Verlag, Berlin, 2010)Google Scholar
  18. 18.
    A.C.J. Luo, Continuous dynamical systems (HEP/L&H Scientific, Beijing, 2012)Google Scholar
  19. 19.
    A.C.J. Luo, Int. J. Dyn. Control 1, 330 (2013)CrossRefGoogle Scholar
  20. 20.
    A.C.J. Luo, Discretization and implicit mapping dynamics (HEP/Springer, Beijing/Dordrecht, 2015)Google Scholar
  21. 21.
    A.C.J. Luo, J.Z. Huang, Int. J. Bifurc. Chaos 22, 1250093 (2012)CrossRefGoogle Scholar
  22. 22.
    A.C.J. Luo, H.X. Jin, Int. J. Bifurc. Chaos 24, 1450126 (2014)CrossRefGoogle Scholar
  23. 23.
    A.C.J. Luo, H.X. Jin, Int. J. Dyn. Control 3, 325 (2015)MathSciNetCrossRefGoogle Scholar
  24. 24.
    A.C.J. Luo, Y. Guo, Discontin. Nonlinearity Complex. 4, 121 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    A.C.J. Luo, S.Y. Xing, Nonlinear Dyn. 89, 405 (2016)Google Scholar
  26. 26.
    S.Y. Xing, A.C.J. Luo, J. Vib. Test. Syst. Dyn. 1, 353 (2017)Google Scholar
  27. 27.
    A.C.J. Luo, S.Y. Xing, Time-delay effects on periodic motions in a Duffing oscillator, in Chaotic, Fractional, and Complex Dynamics: New Insights and Perspectives, Understanding Complex Systems (Springer, Cham, 2017)Google Scholar
  28. 28.
    Y. Xu, A.C.J. Luo, J. Vib. Test. Syst. Dyn. 2, 119 (2018)Google Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringCalifornia Polytechnic State UniversitySan Luis ObispoUSA
  2. 2.Department of Mechanical and Industry EngineeringSouthern Illinois University, EdwardsvilleEdwardsvilleUSA

Personalised recommendations