Advertisement

The European Physical Journal Special Topics

, Volume 228, Issue 6, pp 1441–1457 | Cite as

Stability of periodic motions in an inclined impact pair

  • Yanyan Zhang
  • Xilin FuEmail author
Regular Article Topical issue
  • 7 Downloads
Part of the following topical collections:
  1. Discontinuous Dynamical Systems and Synchronization

Abstract

Using the theory of the discontinuous dynamical systems, the dynamics of an inclined impact oscillator on the platform driven by periodic displacement excitation are investigated in this paper. To investigate periodic motions with simple impact sequences, four basic impact mappings are defined, and the mapping models of possible periodic motions without stick are developed. And then by the discrete mapping theory, the period-n periodic motions induced by period-doubling bifurcations are investigated analytically. The existence conditions of periodic motions with 2n alternate impacts on two sides and periodic motions with n impacts only on one side are obtained. By eigenvalue analyses the stability conditions of periodic motions with only impacts on one side are studied, the regions for stability, saddle-node bifurcation and period doubling bifurcation for periodic motion with one impact are developed in parameter space. Finally the numerical simulations of such periodic motion are given to demonstrate the analytical results. The stability conditions of periodic motions with impacts on two sides are being investigated in the inclined impact pair.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.F. Masri, T.K. Caughey, J. Appl. Mech. 33, 586 (1966)ADSCrossRefGoogle Scholar
  2. 2.
    R.K. Roy, R.D. Rocke, J.E. Foster, J. Eng. Ind. 97, 1317 (1975)CrossRefGoogle Scholar
  3. 3.
    S.W. Shaw, P.J. Holmes, J. Sound Vib. 90, 129 (1983)ADSCrossRefGoogle Scholar
  4. 4.
    C.N. Bapat, N. Popplewell, K. McLachlan, J. Sound Vib. 87, 19 (1983)ADSCrossRefGoogle Scholar
  5. 5.
    C.N. Bapat, C. Bapat, J. Sound Vib. 120, 53 (1988)ADSCrossRefGoogle Scholar
  6. 6.
    C.N. Bapat, S. Sankar, J. Sound Vib. 99, 85 (1985)ADSCrossRefGoogle Scholar
  7. 7.
    M.S. Heiman, P.J. Sherman, A.K. Bajaj, J. Sound Vib. 114, 535 (1987)ADSCrossRefGoogle Scholar
  8. 8.
    M.S. Heiman, A.K. Bajaj, P.J. Sherman, J. Sound Vib. 124, 55 (1988)ADSCrossRefGoogle Scholar
  9. 9.
    P.C. Tung, S.W. Shaw, J. Vib. Acoust. Stress Reliab. Design 110, 193 (1988)CrossRefGoogle Scholar
  10. 10.
    A.B. Nordmark, J. Sound Vib. 145, 279 (1991)ADSCrossRefGoogle Scholar
  11. 11.
    G.S. Whiston, J. Sound Vib. 152, 427 (1992)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    B. Blazejczyk, T. Kapitaniak, J. Wojewoda, R. Barron, J. Sound Vib. 178, 272 (1994)ADSCrossRefGoogle Scholar
  13. 13.
    G.W. Luo, J.H. Xie, Physica D 148, 183 (2001)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    O. Janin, C.H. Lamarque, Int. J. Numer. Methods Eng. 51, 1101 (2001)CrossRefGoogle Scholar
  15. 15.
    J.L. Cheng, H. Xu, J. Mech. Mater. Struct. 1, 239 (2006)CrossRefGoogle Scholar
  16. 16.
    G.W. Luo, X.H. Lv, Nonlinear Anal.: Real World Appl. 10, 2047 (2009)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Y. Yue, Nonlinear Anal.: Real World Appl. 12, 741 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    R. Vinayaravi, D. Kumaresan, K. Jayaraj, A.K. Asraff, R. Muthukumar, J. Sound Vib. 332, 1324 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    A. Okniński, B. Radziszewski, Int. J. Non-Linear Mech. 65, 226 (2014)CrossRefGoogle Scholar
  20. 20.
    G. Wen, S. Yin, H. Xu, S. Zhang, Z. Lv, Chaos Solitons Fractals 83, 112 (2016)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    K. Czolczynski, B. Blazejczyk-Okolewska, A. Okolewski, Int. J. Mech. Sci. 115, 325 (2016)CrossRefGoogle Scholar
  22. 22.
    A.C.J. Luo, Discontinuous dynamical systems on time-varying domains (Higher Education Press, Beijing, 2009)Google Scholar
  23. 23.
    A.C.J. Luo, Discontinuous dynamical systems (Higher Education Press, Beijing, 2012)Google Scholar
  24. 24.
    R.P.S. Han, A.C.J. Luo, W. Deng, J. Sound Vib. 181, 231 (1995)ADSCrossRefGoogle Scholar
  25. 25.
    A.C.J. Luo, Chaos Solitons Fractals 19, 823 (2004)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    A.C.J. Luo, R.P.S. Han, Nonlinear Dyn. 10, 1 (1996)CrossRefGoogle Scholar
  27. 27.
    Y. Guo, A.C.J. Luo, Int. J. Bifurc. Chaos 22, 1250268 (2012)CrossRefGoogle Scholar
  28. 28.
    Y. Guo, A.C.J. Luo, inProceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition, IMECE2012-86075 (2012)Google Scholar
  29. 29.
    A.C.J. Luo, D. O’Connor, , inProceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE2011-62944 (2011)Google Scholar
  30. 30.
    D. O’Connor, A.C.J. Luo, Int. J. Bifurc. Chaos 24, 1450163 (2014)CrossRefGoogle Scholar
  31. 31.
    S.S. Zheng, X.L. Fu, J. Appl. Nonlinear Dyn. 2, 373 (2013)CrossRefGoogle Scholar
  32. 32.
    X.H. Sun, X.L. Fu, J. Appl. Math. 2014, 341635 (2014)ADSGoogle Scholar
  33. 33.
    Y.Y. Zhang, X.L. Fu, Commun. Nonlinear Sci. Numer. Simul. 20, 1033 (2015)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    X.L. Fu, Y.Y. Zhang, Chaos Solitons Fractals 76, 218 (2015)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematics and Statistics, Shandong Normal UniversityJi’nanP.R. China

Personalised recommendations