Advertisement

The European Physical Journal Special Topics

, Volume 228, Issue 6, pp 1527–1534 | Cite as

A neural memristor system with infinite or without equilibrium

  • Fuqiang WuEmail author
  • Ge Zhang
  • Jun Ma
Regular Article Topical issue
  • 25 Downloads
Part of the following topical collections:
  1. Discontinuous Dynamical Systems and Synchronization

Abstract

Memristor has been investigated in dynamical systems. Due to the ionic transportation from extracellular and intracellular, the induction current is excitable in neuron with ion-channels based on the electromagnetic effect. A neural memristor system is reconstructed when the induction current is considered. Furthermore, the dynamical behaviors are calculated by the mathematical approaches, including the bifurcation diagram, time series, and equilibrium point analysis. It is found that the neural memristor system has the infinite equilibrium and no-equilibrium when a bifurcation parameter varies. For the neural model with memristor, its dynamical behaviors can transit from multi-period attractor into strange attractor with varying the bifurcation parameter. It is important to point out that the memory interplay between membrane potential and induction current depends on the initial magnetic flux.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Chua, IEEE Trans. Circuit Theory 18, 507 (1971) CrossRefGoogle Scholar
  2. 2.
    D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453, 80 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    M. Itoh, L.O. Chua, Int. J. Bifurcat. Chaos 18, 3183 (2008)CrossRefGoogle Scholar
  4. 4.
    J.J. Yang, D.B. Strukov, D.R. Stewart, Nat. Nanotechnol. 8, 13 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    Y.N. Joglekar, S.J. Wolf, Eur. J. Phys. 30, 661 (2009)CrossRefGoogle Scholar
  6. 6.
    K.H. Kim, S. Gaba, D. Wheeler, J.M. Cruz-Albrecht, T. Hussain, N. Srinivasa, W. Lu, Nano Lett. 12, 389 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    B. Muthuswamy, P.P. Kokate, IETE Tech. Rev. 26, 417 (2009)CrossRefGoogle Scholar
  8. 8.
    A. Buscarino, L. Fortuna, M. Frasca, L. Valentina Gambuzza, Chaos 22, 023136 (2012)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    B. Muthuswamy, L.O. Chua, Int. J. Bifurc. Chaos 20, 1567 (2010)CrossRefGoogle Scholar
  10. 10.
    J. Ma, F. Wu, G. Ren, J. Tang, Appl. Math. Comput. 298, 65 (2017)MathSciNetGoogle Scholar
  11. 11.
    B. Bao, T. Jiang, G. Wang, P. Jin, H. Bao, M. Chen, Nonlinear Dyn. 89, 1157 (2017)CrossRefGoogle Scholar
  12. 12.
    H. Bao, N. Wang, B. Bao, M. Chen, P. Jin, G. Wang, Commun. Nonlinear Sci. Numer. Simul. 57, 264 (2018)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Z. Wang, A. Akgul, V.T. Pham, S. Jafari, Nonlinear Dyn. 89, 1877 (2017)CrossRefGoogle Scholar
  14. 14.
    X. Wang, S. Vaidyanathan, C. Volos, V.T. Pham, T. Kapitaniak, Nonlinear Dyn. 89, 1673 (2017)CrossRefGoogle Scholar
  15. 15.
    F. Wu, P. Zhou, A. Alsaedi, T. Hayat, J. Ma, Chaos, Solitons Fractals 110, 124 (2018)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    G. Zhang, J. Ma, A. Alsaedi, B. Ahmad, F. Alzahrani, Appl. Math. Comput. 321, 290 (2018)MathSciNetGoogle Scholar
  17. 17.
    G. Zhang, F. Wu, T. Hayat, J. Ma, Commun. Nonlinear Sci. Numer. Simul. 65, 79 (2018)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Q. Jia, Phys. Lett. A 366, 217 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    C. Munteanu, V. Brişan, D. Chiroiu, R.Ioan Dumitriu, Nonlinear Dyn. 78, 1877 (2014)CrossRefGoogle Scholar
  20. 20.
    R. Barboza, Int. J. Bifurc. Chaos 28, 1850018 (2018)MathSciNetCrossRefGoogle Scholar
  21. 21.
    J. Liu, S. Liu, J.C. Sprott, Nonlinear Dyn. 83, 1109 (2016)CrossRefGoogle Scholar
  22. 22.
    C. Li, J.C. Sprott, Phys. Lett. A 378, 178 (2014)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nano Lett. 10, 1297 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Y.V. Pershin, M. Di Ventra, Adv. Phys. 602, 145 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    D. Kuzum, R.G.D. Jeyasingh, B. Lee, H.S.P. Wong, Nano Lett. 12, 2179 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    M. Lv, C. Wang, G. Ren, J. Ma, X. Song, Nonlinear Dyn. 85, 1479 (2016)CrossRefGoogle Scholar
  27. 27.
    M. Lv, J. Ma, Neurocomputing 205, 375 (2016)CrossRefGoogle Scholar
  28. 28.
    M. Ge, Y. Jia, Y. Xu, L. Yang, Nonlinear Dyn. 91, 515 (2018)CrossRefGoogle Scholar
  29. 29.
    F. Wu, C. Wang, W. Jin, J. Ma, Physica A 469, 81 (2017)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    L. Duan, Q. Cao, Z. Wang, J. Su, Nonlinear Dyn. 94, 1961 (2018)CrossRefGoogle Scholar
  31. 31.
    J. Wu, Y. Xu, J. Ma, PLoS One 12, e0174330 (2017)CrossRefGoogle Scholar
  32. 32.
    G. Ren, Y. Xu, C. Wang, Nonlinear Dyn. 88, 893 (2017)CrossRefGoogle Scholar
  33. 33.
    F. Wu, C. Wang, Y. Xu, J. Ma, Sci. Rep. 6, 28 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    J. Ma, F. Wu, T. Hayat, P. Zhou, J. Tang, Physica A 486, 508 (2017)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    A. Mvogo, C.N. Takembo, H.P.E. Fouda, T.C. Kofané, Phys. Lett. A 381, 2264 (2017)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    J. Ma, J. Tang, Sci. China Technol. Sci. 58, 2038 (2015)CrossRefGoogle Scholar
  37. 37.
    J. Ma, L. Mi, P. Zhou, Y. Xu, T. Hayat, Appl. Math. Comput. 307, 321 (2017)MathSciNetGoogle Scholar
  38. 38.
    Y. Xu, Y. Jia, J. Ma, T. Hayat, A. Alsaedi, Sci Rep. 8, 1349 (2018)ADSCrossRefGoogle Scholar
  39. 39.
    F. Wu, J. Ma, G. Zhang, Appl. Math. Comput. 347, 590 (2019)MathSciNetGoogle Scholar
  40. 40.
    G.A. Leonov, N.V. Kuznetsov, O.A. Kuznetsova, S.M. Seledzhi, V.I. Vagaitsev, WSEAS Trans. Syst. Control 6, 54 (2011)Google Scholar
  41. 41.
    N.V. Stankevich, N.V. Kuznetsov, G.A. Leonov, L.O. Chua, Int. J. Bifurc. Chaos 27, 1730038 (2017)CrossRefGoogle Scholar
  42. 42.
    J. Ma, F. Wu, W. Jin, P. Zhou, T. Hayat, Chaos 27, 053108 (2017)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    A. Moujahid, A. D’Anjou, F.J. Torrealdea, F. Torrealdea, Phys. Rev. E. 83, 031912 (2011)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Aerospace Engineering and Applied Mechanics, Tongji UniversityShanghaiP.R. China
  2. 2.Department of PhysicsLanzhou University of TechnologyLanzhouP.R. China

Personalised recommendations