The European Physical Journal Special Topics

, Volume 228, Issue 9, pp 1873–1889 | Cite as

Resonance capture and targeted energy transfer for suppressing aeroelastic instability of 2-D wing

  • Wenfan Zhang
  • Jiaqi Fang
  • Yongsen He
  • Jiazhong ZhangEmail author
Regular Article Topical issue
Part of the following topical collections:
  1. Periodic Motions and Chaos in Nonlinear Dynamical Systems


Numerical simulations were conducted to study flow-induced vibration of a two-dimensional airfoil with two nonlinear energy sinks (NES). The relationship between targeted energy transfer (TET) and vibration suppression is analyzed in detail. The main system has two degrees of freedom – the pitch and heave. The two NES are treated as subsystems, in which the first NES is place at the leading edge and the second NES is placed at the trailing edge. The limit cycle oscillation (LCO), which is to be suppressed by the NES, is studied from the viewpoint of the TET. The resonance capture (RC) in the coupled nonlinear system is also discussed by the means of the energy and spectrum analysis. This is followed by a detailed target energy transfer discussion of the heave and pitch modes and the NES. In addition, the empirical mode decomposition (EMD) is utilized to obtain an intrinsic mode function (IMF) to analyze resonance capture in the system. The results show that the NES can absorb vigorous amount of energy from one of the specified vibration modes. As the RC occurs, the TET between the vibration modes in the coupled system becomes more significant. In particular, the TET between the NES and the wing becomes more efficient. This results in an increase in the critical freestream velocity as the NES suppresses the nonlinear vibration of the main system in a very effective way. As the total energy exceeds the suppression range of the subsystem, the NES loses its effectiveness on vibration suppression effect on the main system. The IMF of the EMD exhibits special super-harmonic resonance and frequency competition characteristics.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.F. Sheta, V.J. Harrand, D.E. Thompson, T.W. Strganac, J. Aircr. 39, 133 (2002)CrossRefGoogle Scholar
  2. 2.
    S. Singh, M. Brenner, Nonlinear Dyn. 31, 435 (2003)CrossRefGoogle Scholar
  3. 3.
    C. Denegri, J. Aircr. 37, 761 (2000)CrossRefGoogle Scholar
  4. 4.
    R. Bunton, C. Denegri, J. Aircr. 37, 916 (2000)CrossRefGoogle Scholar
  5. 5.
    J. Croft, Aviation Week Space Technol. 155, 41 (2001)Google Scholar
  6. 6.
    G. Kerschen, Y.S. Lee, A.F. Vakakis, SIAM J. Appl. Math. 66, 648 (2006)CrossRefGoogle Scholar
  7. 7.
    M. Kurt, I. Slavkin, M. Eriten, D.M. McFarland, O.V. Gendelman, L.A. Bergman, A.F. Vakakis, Arch. Appl. Mech. 84, 1189 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Starosvetsky, O. Gendelman, J. Sound Vib. 329, 1836 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    D. Quinn, R. Rand, J. Bridge, Nonlinear Dyn. 8, 1 (1995)CrossRefGoogle Scholar
  10. 10.
    D. Quinn, Nonlinear Dyn. 14, 309 (1997)CrossRefGoogle Scholar
  11. 11.
    D. Quinn, Int. J. Non-Linear Mech. 32, 1193 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    S. Fatimah, F. Verhulst, Nonlinear Dyn. 31, 275 (2003)CrossRefGoogle Scholar
  13. 13.
    Y. Liu, K.L. Li, J.Z. Zhang, Commun. Nonlinear Sci. Numer. Simul. 17, 3427 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    O.V. Gendelman, D.V. Gorlov, L.I. Manevitch, A.I. Musienko, J. Sound Vib. 286, 1 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    Y.S. Lee, A.F. Vakakis, L.A. Bergman, D.M. McFarland, G. Kerschen, Triggering mechanisms of limit cycle oscillations in a two degree-of-freedom wing flutter model, in Asme International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2005, pp. 1863–1872Google Scholar
  16. 16.
    Y.S. Lee, A.F. Vakakis, L.A. Bergman, D. Michael McFarland, Struct. Control Health Monit. 13, 41 (2005)CrossRefGoogle Scholar
  17. 17.
    Y.S. Lee, G. Kerschen, A.F. Vakakis, P. Panagopoulos, L. Bergman, D.M. McFarland, Physica D 204, 41 (2005)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    M. Leonid, K. Agnessa, Phys. Rev. E 87, 304 (2012)Google Scholar
  19. 19.
    S.A. Hubbard, D.M. McFarland, L.A. Bergman, A.F. Vakakis, G. Andersen, AIAA J. 52, 2633 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    S.A. Hubbard, R.L. Fontenot, D.M. McFarland, P.G. Cizmas, L.A. Bergman, T.W. Strganac, A.F. Vakakis, J. Aircr. 51, 1467 (2014)CrossRefGoogle Scholar
  21. 21.
    Y. Lee, A. Vakakis, L. Bergman, D.M. McFarland, G. Kerschen, AIAA J. 45, 693 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Y.C. Zhang, X.R. Kong, H.L. Zhang, J. Vib. Shock 31, 150 (2012)Google Scholar
  23. 23.
    Y.C. Zhang, X.R. Kong, Z.X. Yang, H.L. Zhang, J. Vib. Eng. 24, 111 (2011)Google Scholar
  24. 24.
    E.H. Dowell, J. Mech. Des. 103, 465 (1995)Google Scholar
  25. 25.
    Y.A. Kuznetsov, Elements of applied bifurcation theory (Springer-Verlag, New York, 1995)Google Scholar
  26. 26.
    J.Z. Zhang, The stability, bifurcation theory and application of nonlinear dynamic system (Xi’an Jiaotong University Press, Xi’an, 2010)Google Scholar
  27. 27.
    N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.C. Yen, C.C. Tung, H.H. Liu, Proc. R. Soc. London Ser. A 454, 903 (1998)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Wenfan Zhang
    • 1
  • Jiaqi Fang
    • 1
  • Yongsen He
    • 1
  • Jiazhong Zhang
    • 1
    Email author
  1. 1.School of Energy and Power Engineering, Xi’an Jiaotong University Xi’anShaanxiP.R. China

Personalised recommendations