Advertisement

The European Physical Journal Special Topics

, Volume 228, Issue 10, pp 1969–1981 | Cite as

Antimonotonicity and multistability in a fractional order memristive chaotic oscillator

  • Chao-Yang Chen
  • Karthikeyan Rajagopal
  • Ibrahim Ismael Hamarash
  • Fahimeh NazarimehrEmail author
  • Fawaz E. Alsaadi
  • Tasawar Hayat
Open Access
Regular Article
  • 37 Downloads
Part of the following topical collections:
  1. Memristor-based Systems: Nonlinearity, Dynamics and Applications

Abstract

A memristor diode bridge chaotic circuit is proposed in this paper. The proposed oscillator has only one nonlinear element in the form of memristor. Dynamical properties of the proposed oscillator are investigated. The fractional order model of the oscillator is designed using Grünwald–Letnikov (GL) method. Bifurcation diagrams are plotted which shows that the proposed oscillator exhibits multistability. Finally, the antimonotonicity property of the fractional order oscillator is discussed in detail with two control parameters. Such property has not been explored for fractional order systems before.

References

  1. 1.
    J.C. Sprott, Phys. Rev. E 50, R647 (1994)ADSCrossRefGoogle Scholar
  2. 2.
    S. Jafari, J.C. Sprott, S.M.R. Hashemi Golpayegani, Phys. Lett. A 377, 699 (2013)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    S. Jafari, J.C. Sprott, Chaos Solitons Fractals 57, 79 (2013)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    M. Molaie, S. Jafari, J.C. Sprott, S.M.R.H. Golpayegani, Int. J. Bifurc. Chaos 23, 1350188 (2013)CrossRefGoogle Scholar
  5. 5.
    Z. Wei, R. Wang, A. Liu, Math. Comput. Simul. 100, 13 (2014)CrossRefGoogle Scholar
  6. 6.
    V.T. Pham, S. Jafari, C. Volos, X. Wang, S.M.R.H. Golpayegani, Int. J. Bifurc. Chaos 24, 1450146 (2014)CrossRefGoogle Scholar
  7. 7.
    F. Nazarimehr, K. Rajagopal, J. Kengne, S. Jafari, V.T. Pham, Chaos Solitons Fractals 111, 108 (2018)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    S. Ren, S. Panahi, K. Rajagopal, A. Akgul, V.T. Pham, S. Jafari, Z. Naturforsch, a 73, 239 (2018)Google Scholar
  9. 9.
    Z. Wei, I. Moroz, A. Liu, Turk. J. Math. 38, 672 (2014)CrossRefGoogle Scholar
  10. 10.
    V.T. Pham, S. Jafari, T. Kapitaniak, C. Volos, S.T. Kingni, Int. J. Bifurc. Chaos 27, 1750053 (2017)CrossRefGoogle Scholar
  11. 11.
    V.T. Pham, X. Wang, S. Jafari, C. Volos, T. Kapitaniak, Int. J. Bifurc. Chaos 27, 1750097 (2017)CrossRefGoogle Scholar
  12. 12.
    X. Wang, V.T. Pham, S. Jafari, C. Volos, J.M. Munoz-Pacheco, E. Tlelo-Cuautle, IEEE Access 5, 8851 (2017)CrossRefGoogle Scholar
  13. 13.
    J.P. Singh, B. Roy, Nonlinear Dyn. 89, 1 (2017)CrossRefGoogle Scholar
  14. 14.
    V.T. Pham, C. Volos, T. Kapitaniak, S. Jafari, X. Wang, Int. J. Electron. 105, 385 (2018)Google Scholar
  15. 15.
    S. Panahi, Z. Aram, S. Jafari, V.T. Pham, C. Volos, K. Rajagopal, Pramana 90, 31 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    J.P. Singh, B.K. Roy, S. Jafari, Chaos Solitons Fractals 106, 243 (2018)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    S. Jafari, J.C. Sprott, V.T. Pham, C. Volos, C. Li, Nonlinear Dyn. 86, 1349 (2016)CrossRefGoogle Scholar
  18. 18.
    S. Jafari, J.C. Sprott, M. Molaie, Int. J. Bifurc. Chaos 26, 1650098 (2016)CrossRefGoogle Scholar
  19. 19.
    K. Rajagopal, S. Jafari, A. Karthikeyan, A. Srinivasan, B. Ayele, Circuits Syst, Signal Process. 37, 1 (2018)Google Scholar
  20. 20.
    K. Rajagopal, S. Çiçek, A.J.M. Khalaf, V.T. Pham, S. Jafari, A. Karthikeyan, P. Duraisamy, Z. Naturforsch, a 73, 609 (2018)Google Scholar
  21. 21.
    E. Tlelo-Cuautle, L.G. De La Fraga, V.T. Pham, C. Volos, S. Jafari, A. de Jesus Quintas-Valles, Nonlinear Dyn. 89, 1 (2017)CrossRefGoogle Scholar
  22. 22.
    C. Li, K. Su, L. Wu, J. Comput. Nonlinear Dyn. 8, 031005 (2013)CrossRefGoogle Scholar
  23. 23.
    C. Li, Y. Tong, Pramana 80, 583 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Y. Zhang, Phys. Lett. A 377, 1269 (2013)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    J. Ma, P. Zhou, B. Ahmad, G. Ren, C. Wang, PLoS One 13, e0191120 (2018)CrossRefGoogle Scholar
  26. 26.
    W. Ai, K. Sun, Y. Fu, Int. J. Mod. Phys. C 29, 1850049 (2018)ADSCrossRefGoogle Scholar
  27. 27.
    J.C. Sprott, S. Jafari, A.J.M. Khalaf, T. Kapitaniak, Eur. Phys. J. Special Topics 226, 1979 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    Y.-X. Tang, A.J.M. Khalaf, K. Rajagopal, V.-T. Pham, S. Jafari, Y. Tian, Chin. Phys. B 27, 40502 (2018)CrossRefGoogle Scholar
  29. 29.
    C. Li, J.C. Sprott, Y. Mei, Nonlinear Dyn. 89, 2629 (2017)CrossRefGoogle Scholar
  30. 30.
    Z. Wei, V.T. Pham, A.J.M. Khalaf, J. Kengne, S. Jafari, Int. J. Bifurc. Chaos 28, 1850085 (2018)CrossRefGoogle Scholar
  31. 31.
    B. Bao, T. Jiang, G. Wang, P. Jin, H. Bao, M. Chen, Nonlinear Dyn. 89, 1157 (2017)CrossRefGoogle Scholar
  32. 32.
    B. Bao, T. Jiang, Q. Xu, M. Chen, H. Wu, Y. Hu, Nonlinear Dyn. 86, 1711 (2016)CrossRefGoogle Scholar
  33. 33.
    B.C. Bao, H. Bao, N. Wang, M. Chen, Q. Xu, Chaos Solitons Fractals 94, 102 (2017)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    H. Bao, N. Wang, B. Bao, M. Chen, P. Jin, G. Wang, Commun. Nonlinear Sci. Numer. Simul. 57, 264 (2018)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    J.P. Singh, B. Roy, Optik 145, 209 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    N.V. Stankevich, N.V. Kuznetsov, G.A. Leonov, L.O. Chua, Int. J. Bifurc. Chaos 27, 1730038 (2017)CrossRefGoogle Scholar
  37. 37.
    N.V. Kuznetsov, G.A. Leonov, M.V. Yuldashev, R.V. Yuldashev, Commun. Nonlinear Sci. Numer. Simul. 51, 39 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    P.R. Sharma, M.D. Shrimali, A. Prasad, N.V. Kuznetsov, G.A. Leonov, Eur. Phys. J. Special Topics 224, 1485 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    M.-F. Danca, N. Kuznetsov, Chaos Solitons Fractals 103, 144 (2017)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    J.P. Singh, B.K. Roy, Trans. Inst. Meas. Control 40, 3573 (2017)CrossRefGoogle Scholar
  41. 41.
    B. Bao, A. Hu, H. Bao, Q. Xu, M. Chen, H. Wu, Complexity 2018, 3872573 (2018)Google Scholar
  42. 42.
    Y. Zhang, L.F. Lu, Nonlinear Dyn. 77, 1121 (2014)CrossRefGoogle Scholar
  43. 43.
    B. Bao, L. Xu, Z. Wu, M. Chen, H. Wu, Int. J. Electron. 105, 1159 (2018)CrossRefGoogle Scholar
  44. 44.
    Y. Zhang, Nonlinear Dyn. 73, 2221 (2013)CrossRefGoogle Scholar
  45. 45.
    B.C. Bao, P.Y. Wu, H. Bao, H.G. Wu, X. Zhang, M. Chen, Chaos Solitons Fractals 109, 146 (2018)ADSCrossRefGoogle Scholar
  46. 46.
    B.C. Bao, P.Y. Wu, H. Bao, Q. Xu, M. Chen, Chaos Solitons Fractals 106, 161 (2018)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    H. Bao, N. Wang, H. Wu, Z. Song, B. Bao, I.E.T.E. Tech, Rev. 36, 1 (2019)Google Scholar
  48. 48.
    Q. Xu, Q.L. Zhang, H. Qian, H.G. Wu, B.C. Bao, Int. J. Circuit Theory Appl. 46, 1917 (2018)CrossRefGoogle Scholar
  49. 49.
    H. Wu, B. Bao, Z. Liu, Q. Xu, P. Jiang, Nonlinear Dyn. 83, 893 (2016)CrossRefGoogle Scholar
  50. 50.
    Y. Zhang, G. Luo, Q. Cao, M. Lin, Int. J. Nonlinear Mech. 58, 151 (2014)ADSCrossRefGoogle Scholar
  51. 51.
    X. Wang, S.T. Kingni, C. Volos, V.T. Pham, D. Vo Hoang, S. Jafari, Int. J. Electron. 106, 109 (2019)CrossRefGoogle Scholar
  52. 52.
    K. Rajagopal, F. Nazarimehr, A. Karthikeyan, A. Srinivasan, S. Jafari, Asian J. Control 20, 1979 (2018)MathSciNetCrossRefGoogle Scholar
  53. 53.
    K. Rajagopal, A. Akgul, S. Jafari, B. Aricioglu, Nonlinear Dyn. 91, 957 (2018)CrossRefGoogle Scholar
  54. 54.
    Z. Njitacke, L.K. Kengne, Chaos Solitons Fractals 105, 77 (2017)ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    B. Bao, J. Yu, F. Hu, Z. Liu, Int. J. Bifurc. Chaos 24, 1450143 (2014)CrossRefGoogle Scholar
  56. 56.
    M.P. Hanias, G. Giannaris, A. Spyridakis, A. Rigas, Chaos Solitons Fractals 27, 569 (2006)ADSCrossRefGoogle Scholar
  57. 57.
    A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Physica D 16, 285 (1985)ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    K. Diethelm, A.D. Freed, Forschung und wissenschaftliches Rechnen 1999, 57 (1998)Google Scholar
  59. 59.
    R. Garrappa, Predictor-corrector PECE method for fractional differential equations. MATLAB Central File Exchange [File ID: 32918] (2011)Google Scholar
  60. 60.
    M.-F. Danca, Nonlinear Dyn. 81, 227 (2015)CrossRefGoogle Scholar
  61. 61.
    I. Petráš, Fractional-order nonlinear systems, nonlinear physical science (Higher Education Press and Springer, Beijing, 2011)zbMATHCrossRefGoogle Scholar
  62. 62.
    M.F. Tolba, A.M. AbdelAty, N.S. Soliman, L.A. Said, A.H. Madian, A.T. Azar, A.G. Radwan, A.E.U. Int, J. Electron. Commun. 78, 162 (2017)Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Chao-Yang Chen
    • 1
    • 2
  • Karthikeyan Rajagopal
    • 3
  • Ibrahim Ismael Hamarash
    • 4
  • Fahimeh Nazarimehr
    • 5
    Email author
  • Fawaz E. Alsaadi
    • 6
  • Tasawar Hayat
    • 7
    • 8
  1. 1.School of Information and Electrical Engineering, Hunan University of Science and TechnologyXiangtanP.R. China
  2. 2.Center for Polymer Studies and Department of Physics, Boston UniversityBostonUSA
  3. 3.Center for Nonlinear Dynamics, Defence UniversityBishoftuEthiopia
  4. 4.Department of Computer Science and EngineeringUniversity of Kurdistan-HewlerErbilIraq
  5. 5.Department of Biomedical EngineeringAmirkabir University of TechnologyTehranIran
  6. 6.Department of information TechnologyFaculty of Computing and IT, King Abdulaziz UniversityJeddahSaudi Arabia
  7. 7.Department of MathematicsQuaid-I-Azam University 45320IslamabadPakistan
  8. 8.NAAM Research Group, King Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations