Advertisement

The European Physical Journal Special Topics

, Volume 228, Issue 6, pp 1405–1419 | Cite as

Coexistence, bifurcation and chaos of a periodically forced duffing system with absolute nonlinearity

  • Jiayun Chen
  • Fuhong MinEmail author
  • Qiusen Jin
  • Biaomin Ye
Regular Article Topical issue
  • 20 Downloads
Part of the following topical collections:
  1. Discontinuous Dynamical Systems and Synchronization

Abstract

In this paper, the nonlinear dynamics of a Duffing nonautonomous oscillator with absolute function is investigated, and the switching boundary and the corresponding domains are shown. Based on the discontinuous dynamical theory, the motions of the non-smooth duffing system at the switching boundary are studied, and the corresponding analysis conditions of the different motions are obtained, and the parameter mappings are also given. Through numerical simulations, chaotic motions and period orbits are described in detail with different parameters and initial conditions, and the switching bifurcation diagrams through the boundary and basins of attractors are also drawn to investigate the behaviors of the system and coexistence of different attractors.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Zhang, Z. Qu, Y. Dong, Renewable Energy 130, 814 (2018)CrossRefGoogle Scholar
  2. 2.
    S. Brezetskyi, D. Dudkowski, T. Kapitaniak, Eur. Phys. J. Special Topics 224, 1459 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    Q. Wei, H. Zhang, J. Dai, Neurocomput. 72, 1839 (2009)CrossRefGoogle Scholar
  4. 4.
    Y. Zhang, Y.M. Lei, T. Fang, Acta Phys. Sin. - Ch. Ed. 58, 3799 (2009)Google Scholar
  5. 5.
    Z.D. Georgiev, I.M. Uzunov, T.G. Todorov, Nonlinear Dyn. 94, 57(2018)CrossRefGoogle Scholar
  6. 6.
    W.L. Zhao, Z.Q. Huang, J.X. Zhao, J. Circuit Syst. 16, 120 (2011)Google Scholar
  7. 7.
    Y. Xu, Electron. J. Qual. Theory Differ. Equ. 80, 1 (2012)Google Scholar
  8. 8.
    K.S. Tang, K.F. Man, G.Q. Zhong, IEEE Trans. Circuits Syst. 48, 636 (2001)CrossRefGoogle Scholar
  9. 9.
    A.C.J. Luo, Commun. Nonlinear Sci. Numer. Simul. 10, 1 (2005)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    A.C.J. Luo, J. Sound Vib. 285, 443 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    A.C.J. Luo, Nonlinear Anal. Hybrid Syst. 2, 1030 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    A.C.J. Luo, J.Z. Huang, Nonlinear Anal. Real World Appl. 13, 241 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    A.C.J. Luo, P. Zwiegart Jr, J. Sound Vib. 309, 129 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    A.C.J. Luo, B.C. Gegg, J. Comput. Nonlinear Dyn. 1, 212 (2006)CrossRefGoogle Scholar
  15. 15.
    A.C.J. Luo, B.C. Gegg, Int. J. Bifurc. Chaos 16, 3539 (2006)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jiayun Chen
    • 1
  • Fuhong Min
    • 1
    Email author
  • Qiusen Jin
    • 1
  • Biaomin Ye
    • 1
  1. 1.School of Electrical and Automation Engineering, Nanjing Normal UniversityNanjingP.R. China

Personalised recommendations