Advertisement

The European Physical Journal Special Topics

, Volume 228, Issue 9, pp 1855–1871 | Cite as

Periodic, aperiodic and chaotic motions of harmonically excited SDOF and MDOF nonlinear dynamical systems

  • Shudong YuEmail author
  • Delun Wang
Regular Article Topical issue
  • 8 Downloads
Part of the following topical collections:
  1. Periodic Motions and Chaos in Nonlinear Dynamical Systems

Abstract

Responses of nonlinear dynamical systems with single degree of freedom (SDOF) or multiple degrees of freedom (MDOF) to periodic excitations are investigated in this paper using a numerical scheme. The scheme is developed on the basis of the effective mass, damping and stiffness matrices, the incremental generalized coordinates and the Newmark integration method to solve efficiently and accurately second-order nonlinear ordinary differential equations in the hundreds or more. Using the proposed numerical method, long-term behavior of SDOF and MDOF systems of any type of nonlinearities including the well-known van der Pol nonlinear damping forces, the Duffing type nonlinear spring forces and the time-delayed spring force at any strength level (weak, moderate and strong) can be accurately determined. With the help of an adequate mapping frequency, orders of periodicity of periodic responses can be easily and reliably identified. Numerical results, obtained for three oscillators – an SDOF van der Pol oscillator, a time-delayed SDOF Duffing oscillator, and a five-DOF Duffing oscillator, demonstrate that the proposed scheme is ideally suited for solving large scale nonlinear dynamical problems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.C. Wen, Y.N. Li, Y.M. Zhang, Z.W. Song, Vibration Utilization (Engineering Science Publisher, Beijing, 2005)Google Scholar
  2. 2.
    A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations (John Wiley & Sons, Hoboken, NJ, 1979)Google Scholar
  3. 3.
    C. Hayashi, Selected Papers on Nonlinear Oscillations (Nippon Printing and Publishing Co., Osaka, 1975)Google Scholar
  4. 4.
    N. Minorsky, Nonlinear Oscillations (D. Van Nostrand Co., Inc., Princeton, NJ, 1962)Google Scholar
  5. 5.
    V.V. Bolotin, The Dynamic Stability of Elastic Systems (Holden-Day, San Francisco, 1964)Google Scholar
  6. 6.
    Y. Wang, Z. Liu, Nonlinear Dyn. 84, 323 (2016)CrossRefGoogle Scholar
  7. 7.
    W. Szempliriska-Stupnicka, J. Rudowski, Phys. Lett. A 192, 201 (1994)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    A.C.J. Luo, A.B. Lakeh, Int. J. Dyn. Control 2, 474 (2014)CrossRefGoogle Scholar
  9. 9.
    W. Xu, R. Li, S. Li, Nonlinear Dyn. 46, 211 (2006)CrossRefGoogle Scholar
  10. 10.
    S.D. Yu, B.C. Wen, J. Mech. Eng. Sci. 227, 1505 (2013)CrossRefGoogle Scholar
  11. 11.
    M. Wiercigroch, V.W.T. Sin, Chaos Solitons Fractals 9, 209 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    F. Chiba, T. Kaka, Error analysis of Newmark’s method for the second order equation with inhomogeneous term, in Workshop on MHD Computations: Study on Numerical Methods Related to Plasma Confinement, edited by T. Kako, T. Watanabe (National Inst. for Fusion Science, Nagoya, Japan, 1999), pp. 120–129Google Scholar
  13. 13.
    A.C.J. Luo, Y. Guo, Discontin. Nonlinearity Complex. 4, 121 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Y. Guo, A.C.J. Luo, Int. J. Dyn. Control 5, 223 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    A.C.J. Luo, A.B. Lakeh, Int. J. Dyn. Control 1, 99 (2013)CrossRefGoogle Scholar
  16. 16.
    J.C. Ji, C.H. Hansen, Chaos Solitons Fractals 28, 555 (2006)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    S.D. Yu, V. Shah, J. Vib. Acoust. 130, 0611005 (2008)CrossRefGoogle Scholar
  18. 18.
    A.C.J. Luo, S. Xing, Nonlinear Dyn. 88, 2831 (2017)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical and Industrial EngineeringRyerson University TorontoTorontoCanada
  2. 2.School of Mechanical Engineering, Dalian University of TechnologyDalianP.R. China

Personalised recommendations