Advertisement

The European Physical Journal Special Topics

, Volume 228, Issue 6, pp 1475–1491 | Cite as

Piezoelectric frequency up-conversion harvester under sawtooth wave excitation

  • Saeed Onsorynezhad
  • Fengxia WangEmail author
Regular Article Topical issue
  • 28 Downloads
Part of the following topical collections:
  1. Discontinuous Dynamical Systems and Synchronization

Abstract

This work studied an impact based frequency up-conversion mechanism via discontinuous dynamics analysis. The mechanism consists of a piezoelectric beam and a moving stopper. The moving stopper is excited by a sawtooth wave and impacts with the piezoelectric beam, which makes the beam vibrate with its national frequency repeatedly. In the system complex dynamics are induced by impacts, hence to better understand the energy harvesting performance of the piezoelectric beam, we first seek the periodic motions of the system. As the system parameters vary, the output voltage and power of the piezoelectric beam with periodic motions were obtained. The piezoelectric beam was modeled as a mass-spring-damper system, and the linear piezoelectric constitutive law was used to obtain the lumped model of the piezoelectric beam. Using discontinuous dynamics analysis, the generated power and voltage were obtained, and the effect of frequency-up-conversion was demonstrated by comparing the generated power of two cases at low excitation frequencies: (1) the piezoelectric beam was excited via impact with the stopper and (2) the piezoelectric beam was directly subjected to the sawtooth wave. In order to better understand the energy harvesting performance of the piezoelectric harvester, the stable and unstable periodic motions were obtained. The bifurcation diagram of the period-1 and period-2 motions were studied analytically with varying excitation frequency and the initial distance between the stopper and the beam.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N.A. Kelly, T.L. Gibson, Sol. Energy 85,111 (2011) ADSCrossRefGoogle Scholar
  2. 2.
    S. Kim, R. Vyas, J. Bito, K. Niotaki, A. Collado, A. Georgiadis, M.M. Tentzeris, Proc. IEEE 102, 1649 (2014)CrossRefGoogle Scholar
  3. 3.
    S. Monfray, O. Puscasu, G. Savelli, U. Soupremanien, E. Ollier, C. Guerin, L. Frechette, E. Leveille, G. Mirshekari, C. Maitre, P. Coronel, K. Domanski, P. Grabiec, P. Ancey, D. Guyomar, V. Bottarel, G. Ricotti, F. Boeuf, F. Gaillard, T. Skotnicki, Innovative thermal energy harvesting for zero power electronics, Nanoelectronics Workshop (SNW) (IEEE, 2012), pp. 1–4Google Scholar
  4. 4.
    A. Harb, Renewable Energy 36, 2641 (2011)CrossRefGoogle Scholar
  5. 5.
    B.J. Bowers, D.P. Arnold, J. Micromech. Microeng. 19, 094008 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    T. Liu, S. Liu, X. Xie, C. Yang, Z. Yang, X. Zhai, https://doi.org/arXiv:1709.00493 (2017)
  7. 7.
    R. Amirtharajah, A.P. Chandrakasan, IEEE J. Solid-state Circuits 33, 687 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    S. Meninger, J.O. Mur-Miranda, R. Amirtharajah, A. Chandrakasan, J.H. Lang, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 9, 64 (2001)CrossRefGoogle Scholar
  9. 9.
    B. Scully, L. Zuo, J. Shestani, Y. Zhou, Design and characterization of an electromagnetic energy harvester for vehicle suspensions, in ASME 2009 International Mechanical Engineering Congress and Exposition (American Society of Mechanical Engineers, 2009), pp. 1007–1016Google Scholar
  10. 10.
    W. Zhou, L. Zuo, IEEE/ASME Trans. Mechatron. 20, 773 (2015)CrossRefGoogle Scholar
  11. 11.
    F. Wang, W. Wu, A. Lozowski, V. Alizadehyazdi, A. Abedini, Energy harvesting with a piezoelectric thunder, in ASME 2015 International Mechanical Engineering Congress and Exposition (American Society of Mechanical Engineers, 2015), pp. V04BT04A043–V04BT04A043Google Scholar
  12. 12.
    F. Wang, Z. Wang, M. Soroush, A. Abedini, Smart Mater. Struct. 25, 095044 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    B. Andò, S. Baglio, F. Maiorca, C. Trigona, Sens. Actuators A 202, 176 (2013)CrossRefGoogle Scholar
  14. 14.
    N.E. Dutoit, B.L. Wardle, S.G. Kim, Integr. Ferroelectr. 71, 121 (2005)CrossRefGoogle Scholar
  15. 15.
    S. Priya, D.J. Inman, in Energy harvesting technologies(Springer, 2009), Vol. 21Google Scholar
  16. 16.
    P. Muralt, R. Polcawich, S. Trolier-McKinstry, MRS Bull. 34, 658 (2009)CrossRefGoogle Scholar
  17. 17.
    S.P. Beeby, M.J. Tudor, N. White, Meas. Sci. Technol. 17, R175 (2006)CrossRefGoogle Scholar
  18. 18.
    A. Erturk, D.J. Inman, J. Intell. Mater. Syst. Struct. 19, 1311 (2008)CrossRefGoogle Scholar
  19. 19.
    N.G. Stephen, J. Sound Vib. 293, 409 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    H. Kim, S. Priya, H. Stephanou, K. Uchino, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1851 (2007)CrossRefGoogle Scholar
  21. 21.
    I. Kuehne, D. Marinkovic, G. Eckstein, H. Seidel, Sens. Actuators A 142, 292 (2008)CrossRefGoogle Scholar
  22. 22.
    M. Marzencki, Y. Ammar, S. Basrour, Sens. Actuators A 145, 363 (2008)CrossRefGoogle Scholar
  23. 23.
    A. Abedini, S. Onsorynezhad, F. Wang, Study of an impact driven frequency up-conversion piezoelectric harvester, in ASME 2017 Dynamic Systems and Control Conference (American Society of Mechanical Engineers, 2017), pp. V003T41A005–V003T41A005Google Scholar
  24. 24.
    T. Liu, C. Livermore, J. Phys.: Conf. Ser. 660, 012090 (2015)Google Scholar
  25. 25.
    T. Liu, R. St Pierre, C. Livermore, Smart Mater. Struct. 23, 095045 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    S.M. Jung, K.S. Yun, Appl. Phys. Lett. 96, 111906 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    M. Pozzi, M. Zhu, in Advances in energy harvesting methods (Springer, 2013), pp. 119–140Google Scholar
  28. 28.
    L. Gu, C. Livermore, Smart Mater. Struct. 20, 045004 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    S. Onsorynezhad, A. Abedini, F. Wang, Analytical study of a piezoelectric frequency up-conversion harvester under sawtooth wave excitation, in ASME 2018 Dynamic Systems and Control Conference, (American Society of Mechanical Engineers, 2018), pp. V002T18A004–V002T18A004Google Scholar
  30. 30.
    P. Pillatsch, E.M. Yeatman, A.S. Holmes, Sens. Actuators A 206, 178 (2014)CrossRefGoogle Scholar
  31. 31.
    P.J. Holmes, J. Sound Vib. 84, 173 (1982)ADSCrossRefGoogle Scholar
  32. 32.
    S.W. Shaw, P. Holmes, J. Sound Vib. 90, 129 (1983)ADSCrossRefGoogle Scholar
  33. 33.
    M. Heiman, A. Bajaj, P. Sherman, J. Sound Vib. 124, 55 (1988)ADSCrossRefGoogle Scholar
  34. 34.
    S. Shaw, J. Sound Vib. 99, 199 (1985)ADSCrossRefGoogle Scholar
  35. 35.
    A.C.J. Luo, R.P. Han, Nonlinear Dyn. 10, 1 (1996)CrossRefGoogle Scholar
  36. 36.
    A.C.J. Luo, D. O’Connor, Int. J. Bifurc. Chaos 19, 1975 (2009)CrossRefGoogle Scholar
  37. 37.
    D. O’Connor, A.C.J. Luo, Int. J. Bifurc. Chaos 24, 1450163 (2014)CrossRefGoogle Scholar
  38. 38.
    J.W. Strutt, B. Rayleigh, in The theory of sound (Macmillan, 1896),Vol. 2Google Scholar
  39. 39.
    A.C.J. Luo, Regularity and complexity in dynamical systems (Springer, 2012)Google Scholar
  40. 40.
    A.C.J. Luo, Discretization and implicit mapping dynamics (Springer, 2015)Google Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical and Industrial EngineeringSouthern Illinois University EdwardsvilleEdwardsvilleUSA

Personalised recommendations