Advertisement

The European Physical Journal Special Topics

, Volume 228, Issue 10, pp 1951–1967 | Cite as

Image encryption algorithm based on discrete logarithm and memristive chaotic system

  • Wei Feng
  • Yi-Gang He
  • Hong-Min Li
  • Chun-Lai LiEmail author
Regular Article
  • 1 Downloads
Part of the following topical collections:
  1. Memristor-based Systems: Nonlinearity, Dynamics and Applications

Abstract

In order to effectively resist the plaintext attacks introduced in recent cryptanalysis literatures, a reformative image encryption algorithm based on discrete logarithm and a memristive chaotic system is proposed in this paper. Firstly, we realize the permutation and confusion of a plain image by employing the discrete logarithms of memristive chaotic sequences. Then the discrete logarithms of intermediate cipher pixels and memristive chaotic sequences are used in the forward diffusion and backward diffusion of the permuated and confused image. Since the finite multiplication group adopted in this paper has up to 128 generators, we can expand the secret key space and enhance the ability of the proposed image encryption algorithm to resist plaintext attacks, by obtaining the generators through the secret key and the SHA256 hash value of the plain image. Finally, Simulation results and comparative analyses show that the proposed image encryption algorithm is not only secure and efficient, but also has very high practical value.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Peng, X.Q. Gong, M. Long, X.M. Sun, Multimed. Tools Appl. 76, 3235 (2017)CrossRefGoogle Scholar
  2. 2.
    G.F. Kuiate, K. Rajagopal, S.T. Kingni, V.K. Tamba, S. Jafari, Int. J. Dyn. Control 6, 1008 (2018)MathSciNetCrossRefGoogle Scholar
  3. 3.
    R. Kengne, R. Tchitnga, A. Mezatio, A. Fomethe, G. Litak, Eur. Phys. J. B 90, 88 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    J. Ke, L. Yi, T. Hou, Y. Hu, G. Xia, IEEE Photon. J. 9, 7200808 (2017)Google Scholar
  5. 5.
    J. Fridrich, IEEE Int. Conf. Syst. Man Cybern. 2, 1105 (1997)Google Scholar
  6. 6.
    J. Fridrich, Int. J. Bifurc. Chaos 8, 1259 (1998)MathSciNetCrossRefGoogle Scholar
  7. 7.
    S.L. Sun, IEEE Photon. J. 10, 7201714 (2018)Google Scholar
  8. 8.
    S.L. Sun, Opt. Eng. 56, 116117 (2017)ADSGoogle Scholar
  9. 9.
    Q. Yin, C.H. Wang, Int. J. Bifurc. Chaos 28, 1850047 (2018)CrossRefGoogle Scholar
  10. 10.
    Y.P. Li, C.H. Wang, H. Chen, Opt. Lasers Eng. 90, 238 (2017)CrossRefGoogle Scholar
  11. 11.
    X.L. Chai, Z.H. Gan, M.H. Zhang, Multimed. Tools Appl. 76, 15561 (2017)CrossRefGoogle Scholar
  12. 12.
    X.Y. Wang, C.M. Liu, Multimed. Tools Appl. 76, 6229 (2017)CrossRefGoogle Scholar
  13. 13.
    X.L. Chai, Multimed. Tools Appl. 76, 1159 (2017)CrossRefGoogle Scholar
  14. 14.
    S.F. Guo, Y. Liu, L.H. Gong, W.Q. Yu, Y.L. Gong, Multimed. Tools Appl. 77, 21109 (2018)CrossRefGoogle Scholar
  15. 15.
    G.R. Chen, Y.B. Mao, C.K. Chui, Chaos Solitons Fractals 21, 749 (2004)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    N. Bourbakis, C. Alexopoulos, Pattern Recognit. 25, 567 (1992)CrossRefGoogle Scholar
  17. 17.
    G. Unnikrishnan, J. Joseph, K. Singh, Opt. Lett. 25, 887 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    X. Wang, D. Luan, Commun. Nonlinear Sci. Numer. Simul. 18, 3075 (2013)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    R.G. Zhou, Q. Wu, M.Q. Zhang, C.Y. Shen, Int. J. Theor. Phys. 52, 1802 (2013)CrossRefGoogle Scholar
  20. 20.
    C.C. Chang, M.S. Hwang, T.S. Chen, J. Syst. Softw. 58, 83 (2001)CrossRefGoogle Scholar
  21. 21.
    P. Lu, Z.Y. Xu, X. Lu, X.Y. Liu, Optik 124, 2514 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Y.S. Zhang, L.Y. Zhang, J.T. Zhou, L.C. Liu, F. Chen, X. He, IEEE Access 4, 2507 (2016)CrossRefGoogle Scholar
  23. 23.
    R. Rhouma, S. Belghith, Phys. Lett. A 372, 5973 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    Y.L. Luo, L.C. Cao, S.H. Qiu, H. Lin, J. Harkin, J.X. Liu, Nonlinear Dyn. 83, 2293 (2016)CrossRefGoogle Scholar
  25. 25.
    W. Feng, Y.G. He, H.M. Li, C.L. Li, Optik 186, 449 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    W. Feng, Y.G. He, IEEE Photon. J. 10, 7909215 (2018)Google Scholar
  27. 27.
    W. Feng, Y.G. He, H.M. Li, C.L. Li, IEEE Access 7, 12584 (2019)CrossRefGoogle Scholar
  28. 28.
    C.X. Zhu, G.J. Wang, K.H. Sun, Entropy 20, 843 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    C.X. Zhu, G.J. Wang, K.H. Sun, Symmetry-Basel 10, 399 (2018)CrossRefGoogle Scholar
  30. 30.
    L.Y. Zhang, Y.S. Liu, F. Pareschi, Y.S. Zhang, K.W. Wong, R. Rovatti, G. Setti, I.E.E.E. Trans, Cybern. 48, 1163 (2018)Google Scholar
  31. 31.
    L.Y. Zhang, Y.S. Zhang, Y.S. Liu, A.J. Yang, G.R. Chen, Int. J. Bifurc. Chaos 27, 1750155 (2017)CrossRefGoogle Scholar
  32. 32.
    Y.S. Liu, L.Y. Zhang, J. Wang, Y.S. Zhang, K.W. Wong, Nonlinear Dyn. 84, 2241 (2016)CrossRefGoogle Scholar
  33. 33.
    M. Ahmad, E. Al Solami, X.Y. Wang, M.N. Doja, M.M.S. Beg, A.A. Alzaidi, Symmetry-Basel 10, 266 (2018)CrossRefGoogle Scholar
  34. 34.
    M. Li, D.D. Liu, W.Y. Wen, H. Ren, Y.S. Zhang, IEEE Access 6, 47102 (2018)CrossRefGoogle Scholar
  35. 35.
    C.Q. Li, D.D. Lin, B.B. Feng, J.H. Lü, F. Hao, IEEE Access 6, 75834 (2018)CrossRefGoogle Scholar
  36. 36.
    C. Pak, L.L. Huang, Signal Process. 138, 129 (2017)CrossRefGoogle Scholar
  37. 37.
    H. Wang, D. Xiao, X. Chen, H.Y. Huang, Signal Process. 144, 444 (2018)CrossRefGoogle Scholar
  38. 38.
    Y. Liu, X.J. Tong, J. Ma, Multimed. Tools Appl. 75, 7739 (2016)CrossRefGoogle Scholar
  39. 39.
    X.P. Zhang, W.G. Nie, Y.L. Ma, Q.Q. Tian, Multimed. Tools Appl. 76, 15641 (2017)CrossRefGoogle Scholar
  40. 40.
    G.Q. Hu, D. Xiao, Y. Wang, X.Y. Li, Nonlinear Dyn. 88, 1305 (2017)CrossRefGoogle Scholar
  41. 41.
    M. Li, Y.Z. Guo, J. Huang, Y. Li, Signal Process.: Image Commun. 62, 164 (2018)Google Scholar
  42. 42.
    W. Feng, Y.G. He, C.L. Li, X.M. Su, X.Q. Chen, Complexity 2018, 1 (2018)Google Scholar
  43. 43.
    R. Padmavathy, C. Bhagvati, Math. Comput. Modell. 55, 161 (2012)CrossRefGoogle Scholar
  44. 44.
    L.H. Gong, C.Z. Deng, S.M. Pan, N.R. Zhou, Math. Comput. Modell. 103, 48 (2018)Google Scholar
  45. 45.
    Y. Zhang, Y.J. Tang, Multimed. Tools Appl. 77, 6647 (2018)CrossRefGoogle Scholar
  46. 46.
    G.D. Ye, X.L. Huang, L.Y. Zhang, Z.X. Wang, Chin. Phys. B 26, 131 (2017)Google Scholar
  47. 47.
    W.K. Lee, C.W. Phan, W.S. Yap, B.M. Goi, Nonlinear Dyn. 92, 575 (2018)CrossRefGoogle Scholar
  48. 48.
    N.R. Zhou, S.M. Pan, S. Cheng, Z.H. Zhou, Opt. Laser Technol. 82, 121 (2016)ADSCrossRefGoogle Scholar
  49. 49.
    X.L. Chai, K. Yang, Z.H. Gan, Multimed. Tools Appl. 76, 9907 (2017)CrossRefGoogle Scholar
  50. 50.
    M. François, T. Grosges, D. Barchiesi, R. Erra, Appl. Math. 3, 1910 (2012)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Wei Feng
    • 1
  • Yi-Gang He
    • 2
  • Hong-Min Li
    • 1
  • Chun-Lai Li
    • 1
    Email author
  1. 1.College of Physics and Electronics, Hunan Institute of Science and TechnologyYueyangP.R. China
  2. 2.School of Electrical Engineering and Automation, Wuhan UniversityWuhanP.R. China

Personalised recommendations