The European Physical Journal Special Topics

, Volume 228, Issue 3, pp 733–739 | Cite as

Study of the surface properties of NCCO electron-doped cuprate

  • Anita Guarino
  • Paola Romano
  • Jun Fujii
  • Adele Ruosi
  • Francesco AvitabileEmail author
  • Ivana Vobornik
  • Giancarlo Panaccione
  • Antonio Vecchione
  • Angela Nigro
Regular Article
Part of the following topical collections:
  1. Superconductivity and Functional Oxides


Whenever one is interested in making high temperature superconductor-based devices, the goodness of the sample surface in terms of structural and electrical properties is a strong issue. In fact, it is well known that the surface of high Tc superconducting samples is not bulk-representative, due to air contamination and to the possible presence of oxygen vacancies. In addition, the quality of the surface layer results to be crucial in surface sensitive measurements as in X-ray photoelectron and Angle-resolved photoemission spectroscopy. Recently, some studies have been dedicated to the realization of devices based on electron-doped cuprates, bilayers and nanowires, showing the actual possibility to realize good quality junctions by using these cuprates. In this work, we report on the fabrication of thin films of the electron-doped Nd2−xCexCuOδ compound and analyze the surface natural barrier of as-grown films by means of point contact spectroscopy measurements. Suitable treatments of samples in an ozone rich atmosphere have been developed in order to improve the surface quality of the films. Auger electron spectroscopy has been used to monitor the effectiveness of these treatments.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Charpentier, R. Arpaia, J. Gaudet, D. Matte, R. Baghdadi, T. Löfwander, D. Golubev, P. Fournier, T. Bauch, F. Lombardi, Phys. Rev. B 94, 060503 (2016) ADSCrossRefGoogle Scholar
  2. 2.
    N.P. Armitage, P. Fournier, R.L. Greene, Rev. Mod. Phys. 82, 2421 (2010) ADSCrossRefGoogle Scholar
  3. 3.
    H. Yamamoto, M. Naito, H. Sato, Phys. Rev. B 56, 2852 (1997) ADSCrossRefGoogle Scholar
  4. 4.
    G. Panaccione, F. Offi, P. Torelli, G. Vanko, O. Tjernberg, P. Lacovig, A. Guarino, A. Fondacaro, A. Nigro, M. Sacchi, N.B. Brookes, G. Monaco, Phys. Rev. B 77, 125133 (2008) ADSCrossRefGoogle Scholar
  5. 5.
    A. Guarino, G. Panaccione, F. Offi, G. Monaco, A. Fondacaro, P. Torelli, R. Fittipaldi, A. Vecchione, S. Pace, A. Nigro, J. Electron Spectr. Rel. Phenom. 212, 81 (2016) CrossRefGoogle Scholar
  6. 6.
    V.V. Atuchin, T.A. Gavrilova, J.-C. Grivel, V.G. Kesler, Surf. Sci. 602, 3095 (2008) ADSCrossRefGoogle Scholar
  7. 7.
    Z. Mori, M. Tadokoro, Z. Zulhairi, T. Doi, S. Koba, S. Higo, Y. Hakuraku, Supercond. Sci. Technol. 14, 45 (2001) ADSCrossRefGoogle Scholar
  8. 8.
    M. Hoek, F. Coneri, N. Poccia, X. Renshaw Wang, X. Ke, G. Van Tendeloo, H. Hilgenkamp, APL Mater. 3, 086101 (2015) ADSCrossRefGoogle Scholar
  9. 9.
    A. Guarino, A. Leo, G. Grimaldi, N. Martucciello, C. Dean, M.N. Kunchur, S. Pace, A. Nigro, Supercond. Sci. Technol. 27, 124011 (2014) ADSCrossRefGoogle Scholar
  10. 10.
    A. Guarino, L. Parlato, C. Bonavolontà, M. Valentino, C. de Lisio, A. Leo, G. Grimaldi, S. Pace, G. Pepe, A. Vecchione, A. Nigro, J. Phys. Conf. Ser. 507, 012018 (2014) CrossRefGoogle Scholar
  11. 11.
    A. Avella, C. Buonavolontà, A. Guarino, M. Valentino, A. Leo, G. Grimaldi, C. de Lisio, A. Nigro, G. Pepe, Phys. Rev. B 94, 115426 (2016) ADSCrossRefGoogle Scholar
  12. 12.
    A. Guarino, N. Martucciello, P. Romano, A. Leo, D. D’Agostino, M. Caputo, F. Avitabile, A. Ubaldini, G. Grimaldi, A. Vecchione, F. Bobba, C. Attanasio, A. Nigro, IEEE Trans. Appl. Supercond. 27, 7501004 (2017) CrossRefGoogle Scholar
  13. 13.
    P. Romano, M. Riccio, A. Guarino, N. Martucciello, G. Grimaldi, A. Leo, A. Nigro, Measurement 122, 502 (2018) CrossRefGoogle Scholar
  14. 14.
    S. Uthayakumar, R. Fittipaldi, A. Guarino, A. Vecchione, A. Romano, A. Nigro, H.-U. Habermeier, S. Pace, Physica C 468, 2271 (2008) ADSCrossRefGoogle Scholar
  15. 15.
    A. Guarino, G. Patimo, T. Di Luccio, A. Vecchione, A. Nigro, Physica C 495, 146 (2013) ADSCrossRefGoogle Scholar
  16. 16.
    A. Guarino, R. Fittipaldi, A. Romano, A. Vecchione, A. Nigro, Thin Solid Films 524, 282 (2012) ADSCrossRefGoogle Scholar
  17. 17.
    A. Guarino, A. Leo, A. Avella, F. Avitabile, N. Martucciello, G. Grimaldi, A. Romano, S. Pace, P. Romano, A. Nigro, Physica B 536, 742 (2018) ADSCrossRefGoogle Scholar
  18. 18.
    M. Naito, H. Yamamoto, H. Sato, Physica C 282–287, 965 (1997) CrossRefGoogle Scholar
  19. 19.
    J.G. Simmons, J. Appl. Phys. 34, 1793 (1963) ADSCrossRefGoogle Scholar
  20. 20.
    J.G. Simmons, J. Appl. Phys. 34, 2581 (1963) ADSCrossRefGoogle Scholar
  21. 21.
    W.F. Brinkman, R.C. Dynes, J.M. Rowell, J. Appl. Phys. 41, 1915 (1970) ADSCrossRefGoogle Scholar
  22. 22.
    H. Yamamoto, M. Naito, H. Sato, Physica C 291, 67 (1997) ADSCrossRefGoogle Scholar
  23. 23.
    B. Stäuble-Pümpin, B. Ilge, V.C. Matijasevic, P.M.L.O. Scholte, A.J. Steinfort, F. Tuinstra, Surf. Sci. 369, 313 (1996) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Anita Guarino
    • 1
    • 2
  • Paola Romano
    • 3
    • 4
  • Jun Fujii
    • 5
  • Adele Ruosi
    • 6
  • Francesco Avitabile
    • 3
    Email author
  • Ivana Vobornik
    • 5
  • Giancarlo Panaccione
    • 5
  • Antonio Vecchione
    • 4
  • Angela Nigro
    • 4
    • 7
  1. 1.CNR-DSFTM, NFFA-TriesteBasovizza (TS)Italy
  2. 2.CNR-SPIN – NapoliNapoliItaly
  3. 3.Dipartimento di Scienze e Tecnologie, Università del SannioBeneventoItaly
  4. 4.CNR-SPIN – SalernoFisciano (SA)Italy
  5. 5.CNR-IOM Laboratorio TASCBasovizza (TS)Italy
  6. 6.Department of PhysicsTemple UniversityPhiladelphiaUSA
  7. 7.Dipartimento di Fisica E. R. Caianiello, Università di SalernoFisciano (SA)Italy

Personalised recommendations