Advertisement

Cosine chaotification technique to enhance chaos and complexity of discrete systems

  • Hayder Natiq
  • Santo BanerjeeEmail author
  • M. R. M. Said
Regular Article
  • 14 Downloads
Part of the following topical collections:
  1. Microscopic Dynamics, Chaos and Transport in Nonequilibrium Processes

Abstract

We hereby propose a cosine chaotification technique (CCT), which has simple structure, complex nonlinear dynamics and bounded orbits, to enhance the chaotic behavior as well as the complexity performance of discrete chaotic systems. To demonstrate the effectiveness of the CCT, we apply the CCT on three different examples, including one-dimensional (1D) logistic map, two population chaotic maps, and the three-dimensional (3D) Hénon map. Performance evaluations prove that the CCT can change the chaotic and non-chaotic states of these maps to chaotic or hyperchaotic state with higher complexity performance. Besides that, the generated maps by CCT have wider chaotic and hyperchaotic behaviors than the existing chaotic maps.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Wiggins, in Introduction to applied nonlinear dynamical systems and chaos (Springer Science & Business Media, 2003), Vol. 2 Google Scholar
  2. 2.
    S. Banerjee, S. Jeeva Sathya Theesar, J. Kurths, Chaos 23, 013118 (2013) ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    S. Banerjee, S.K. Palit, S. Mukherjee, M.R.K. Ariffin, L. Rondoni, Chaos 26, 033105 (2016) ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    H. Natiq, N.M.G. Al-Saidi, M.R.M. Said, A. Kilicman, Eur. Phys. J. Plus 133, 6 (2018) CrossRefGoogle Scholar
  5. 5.
    H. Natiq, M. Said, N. Al-Saidi, A. Kilicman, Entropy 21, 34 (2019) ADSCrossRefGoogle Scholar
  6. 6.
    O.E. Rössler, Phys. Lett. A 57, 397 (1976) ADSCrossRefGoogle Scholar
  7. 7.
    J.C. Sprott, Phys. Rev. E 50, R647 (1994) ADSCrossRefGoogle Scholar
  8. 8.
    J. Lü, G. Chen, Int. J. Bifurc. Chaos 12, 659 (2002) CrossRefGoogle Scholar
  9. 9.
    S. He, K. Sun, S. Banerjee, Eur. Phys. J. Plus 131, 254 (2016) CrossRefGoogle Scholar
  10. 10.
    L. Rondoni, M.R.K. Ariffin, R. Varatharajoo, S. Mukherjee, S.K. Palit, S. Banerjee, Opt. Commun. 387, 257 (2017) ADSCrossRefGoogle Scholar
  11. 11.
    S. He, S. Banerjee, Physica A 490, 366 (2018) ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    H. Natiq, S. Banerjee, S. He, M.R.M. Said, A. Kilicman, Chaos Solitons Fractals 114, 506 (2018) ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    H. Natiq, M.R.M. Said, M.R.K. Ariffin, S. He, L. Rondoni, S. Banerjee, Eur. Phys. J.Plus 133, 557 (2018) CrossRefGoogle Scholar
  14. 14.
    H. Natiq, S. Banerjee, M.R.K. Ariffin, M.R.M. Said, Chaos 29, 011103 (2019) ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    L. Lin, M. Shen, H.C. So, C. Chang, IEEE Trans. Signal Process. 60, 4426 (2012) ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    D. Li, M. Han, J. Wang, IEEE Trans. Neural Netw. Learn. Syst. 23, 787 (2012) CrossRefGoogle Scholar
  17. 17.
    C. Li, S. Li, M. Asim, J. Nunez, G. Alvarez, G. Chen, Image Vis. Comput. 27, 1371 (2009) CrossRefGoogle Scholar
  18. 18.
    Z. Hua, Y. Zhou, C.M. Pun, C.P. Chen, Inf. Sci. 297, 80 (2015) CrossRefGoogle Scholar
  19. 19.
    Y. Zhang, P. Shi, C.C. Lim, H. Zhu, J. Hu, Y. Zeng, J. Frank. Inst. 354, 5519 (2017) CrossRefGoogle Scholar
  20. 20.
    H. Zhang, G. Chen, Int. J. Bifurc. Chaos 14, 3317 (2004) CrossRefGoogle Scholar
  21. 21.
    G. Chen, Y. Shi, Philos. Trans. R. Soc. Lond. A 364, 2433 (2006) ADSCrossRefGoogle Scholar
  22. 22.
    Y. Zhou, Z. Hua, C.M. Pun, C.L.P. Chen, IEEE Trans. Cybern. 45, 2001 (2015) CrossRefGoogle Scholar
  23. 23.
    Z. Hua, Y. Zhou. IEEE Trans. Cybern. 46, 3330 (2016) CrossRefGoogle Scholar
  24. 24.
    Z. Hua, B. Zhou, Y. Zhou, IEEE Trans. Ind. Electr. 65, 2557 (2018) CrossRefGoogle Scholar
  25. 25.
    F.R. Marotto, Math. Biosci. 58, 123 (1982) MathSciNetCrossRefGoogle Scholar
  26. 26.
    G. Baier, M. Klein, Phys. Lett. A 151, 281 (1990) ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    F. Hubertus, F.E. Udwadia, W. Proskurowski, Physica D 101, 1 (1997) ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    S.M. Pincus, Proc. Natl. Acad. Sci. 88, 2297 (1991) ADSCrossRefGoogle Scholar
  29. 29.
    J.S. Richman, J. Randall Moorman, Am. J. Physiol. Heart Circ. Physiol. 278, H2039 (2000) CrossRefGoogle Scholar
  30. 30.
    W. Chen, J. Zhuang, W. Yu, Z. Wang, Med. Eng. Phys. 31, 61 (2009) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hayder Natiq
    • 1
  • Santo Banerjee
    • 1
    • 2
    Email author
  • M. R. M. Said
    • 1
    • 2
    • 3
  1. 1.Institute for Mathematical Research, Universiti Putra MalaysiaSerdangMalaysia
  2. 2.Malaysia-Italy Centre of Excellence for Mathematical Science, Universiti Putra MalaysiaSerdangMalaysia
  3. 3.Department of MathematicsUniversiti Putra MalaysiaSerdangMalaysia

Personalised recommendations