The European Physical Journal Special Topics

, Volume 228, Issue 11, pp 2465–2474 | Cite as

Synchronization patterns in a blinking multilayer neuronal network

  • Fatemeh Parastesh
  • Chao-Yang Chen
  • Hamed Azarnoush
  • Sajad JafariEmail author
  • Boshra Hatef
Regular Article
Part of the following topical collections:
  1. Diffusion Dynamics and Information Spreading in Multilayer Networks


Synchronization is one of the most prominent collective behaviors in neuroscience which can be associated with information processing and many pathological patterns of the brain. Since multilayer networks have crucial roles in better understanding the real complex systems, in this paper, we study a two-layer neuronal network of Hindmarsh–Rose neurons. Moreover, the network is considered to have blinking structure which can refer to the duration of spikes arrivals and also the synaptic plasticity. The blinking network is composed of the non-locally coupled neurons and time-variant on–off couplings between any other pair of neurons. Particularly, we investigate the synchronization patterns emerging in the network by varying coupling strength and wiring probability, in different values of external current. Variation of the coupling parameters can cause the emergence of various dynamical states such as chimera state, imperfect synchronization and change of synchronous spikes to synchronous bursts or vice versa. It can also lead to synchronization transition between FHC and FH bursting types.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Boccaletti, G. Bianconi, R. Criado, C.I. Del Genio, J. Gómez-Gardenes, M. Romance, I. Sendina-Nadal, Z. Wang, M. Zanin, Phys. Rep. 544, 1 (2014)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    W. He, G. Chen, Q.-L. Han, W. Du, J. Cao, F. Qian, IEEE Trans. Syst. Man Cybern: Syst. 47, 1655 (2017)CrossRefGoogle Scholar
  3. 3.
    V. Berec, Eur. Phys. J. Special Topics 226, 2205 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    M. De Domenico, C. Granell, M.A. Porter, A. Arenas, Nat. Phys. 12, 901 (2016)CrossRefGoogle Scholar
  5. 5.
    D.Y. Kenett, M. Perc, S. Boccaletti, Chaos Solitons Fractals 80, 1 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    M. Kivelä, A. Arenas, M. Barthelemy, J.P. Gleeson, Y. Moreno, M.A. Porter, J. Complex Netw. 2, 203 (2014)CrossRefGoogle Scholar
  7. 7.
    M. Gosak, R. Markovič, J. Dolenšek, M.S. Rupnik, M. Marhl, A. Stožer, M. Perc, Phys. Life Rev. 24, 118 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    M. Porfiri, D.J. Stilwell, E.M. Bollt, J.D. Skufca, Physica D 224, 102 (2006)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    A. Zakharova, A. Feoktistov, T. Vadivasova, E. Schöll, Eur. Phys. J. Special Topics 222, 2481 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    J. Ma, L. Mi, P. Zhou, Y. Xu, T. Hayat, Appl. Math. Comput. 307, 321 (2017)MathSciNetGoogle Scholar
  11. 11.
    J. Ma, X. Song, W. Jin, C. Wang, Chaos Solitons Fractals 80, 31 (2015)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Q. Wang, Z. Duan, M. Perc, G. Chen, Europhys. Lett. 83, 50008 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Q. Wang, M. Perc, Z. Duan, G. Chen, Phys. Rev. E 80, 026206 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    X. Sun, J. Lei, M. Perc, J. Kurths, G. Chen, Chaos 21, 016110 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    J. Tang, J. Ma, M. Yi, H. Xia, X. Yang, Phys. Rev. E 83, 046207 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    V. Berec, Chaos Solitons Fractals 86, 75 (2016)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    S. Majhi, M. Perc, D. Ghosh, Chaos 27, 073109 (2017)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    S. Rakshit, B.K. Bera, M. Perc, D. Ghosh, Sci. Rep. 7, 2412 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Kuramoto, D. Battogtokh, Nonl. Phen. Compl. Syst. 5, 380 (2002)Google Scholar
  20. 20.
    V. Berec, Eur. Phys. J. Special Topics 225, 7 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    Z. Faghani, Z. Arab, F. Parastesh, S. Jafari, M. Perc, M. Slavinec, Chaos Solitons Fractals 114, 306 (2018)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    F. Parastesh, S. Jafari, H. Azarnoush, B. Hatef, A. Bountis, Chaos Solitons Fractals 110, 203 (2018)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    N. Semenova, A. Zakharova, V. Anishchenko, E. Schöll, Phys. Rev. Lett. 117, 014102 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    T.E. Vadivasova, G.I. Strelkova, S.A. Bogomolov, V.S. Anishchenko, Chaos 26, 093108 (2016)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    A. Zakharova, M. Kapeller, E. Schöll, Phys. Rev. Lett. 112, 154101 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    B.K. Bera, S. Majhi, D. Ghosh, M. Perc, Europhys. Lett. 118, 10001 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    S. Kundu, S. Majhi, B.K. Bera, D. Ghosh, M. Lakshmanan, Phys. Rev. E 97, 022201 (2018)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    A. Zakharova, M. Kapeller, E. Schöll, J. Phys. Conf. Ser. 727, 012018 (2016)MathSciNetCrossRefGoogle Scholar
  29. 29.
    J. Xie, E. Knobloch, H.-C. Kao, Phys. Rev. E 90, 022919 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    S. Majhi, D. Ghosh, Chaos 28, 083113 (2018)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    I.A. Shepelev, T.E. Vadivasova, A. Bukh, G. Strelkova, V. Anishchenko, Phys. Lett. A 381, 1398 (2017)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Z. Wei, F. Parastesh, H. Azarnoush, S. Jafari, D. Ghosh, M. Perc, M. Slavinec, Europhys. Lett. 123, 48003 (2018)CrossRefGoogle Scholar
  33. 33.
    Z.M. Wu, H.Y. Cheng, Y. Feng, H.H. Li, Q.L. Dai, J.Z. Yang, Front. Phys. 13, 130503 (2018)CrossRefGoogle Scholar
  34. 34.
    B.K. Bera, D. Ghosh, M. Lakshmanan, Phys. Rev. E 93, 012205 (2016)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    A. Schmidt, T. Kasimatis, J. Hizanidis, A. Provata, P. Hövel, Phys. Rev. E 95, 032224 (2017)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    S. Majhi, M. Perc, D. Ghosh, Sci. Rep. 6, 39033 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    J. Hizanidis, N.E. Kouvaris, G. Zamora-López, A. Daz-Guilera, C.G. Antonopoulos, Sci. Rep. 6, 19845 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    D.J. Stilwell, E.M. Bollt, D.G. Roberson, SIAM J. Appl. Dyn. Syst. 5, 140 (2006)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    J. Zhou, Y. Zou, S. Guan, Z. Liu, S. Boccaletti, Sci. Rep. 6, 35979 (2016)ADSCrossRefGoogle Scholar
  40. 40.
    A. Buscarino, M. Frasca, M. Branciforte, L. Fortuna, J.C. Sprott, Nonlinear Dyn. 88, 673 (2017)CrossRefGoogle Scholar
  41. 41.
    S. Rakshit, B.K. Bera, D. Ghosh, Phys. Rev. E 98, 032305 (2018)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    S. Rakshit, B.K. Bera, D. Ghosh, S. Sinha, Phys. Rev. E 97, 052304 (2018)ADSCrossRefGoogle Scholar
  43. 43.
    S. Rakshit, S. Majhi, B.K. Bera, S. Sinha, D. Ghosh, Phys. Rev. E 96, 062308 (2017)ADSCrossRefGoogle Scholar
  44. 44.
    I.V. Belykh, V.N. Belykh, M. Hasler, Physica D 195, 188 (2004)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    A. Destexhe, E. Marder, Nature 431, 789 (2004)ADSCrossRefGoogle Scholar
  46. 46.
    Y. Shen, Z. Hou, H. Xin, Phys. Rev. E 77, 031920 (2008)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Fatemeh Parastesh
    • 1
  • Chao-Yang Chen
    • 2
  • Hamed Azarnoush
    • 1
  • Sajad Jafari
    • 1
    Email author
  • Boshra Hatef
    • 3
  1. 1.Department of Biomedical EngineeringAmirkabir University of Technology (Tehran Polytechnic)TehranIran
  2. 2.School of Information and Electrical Engineering, Hunan University of Science and TechnologyXiangtanP.R. China
  3. 3.Neuroscience Research Center, Baqiyatallah University of Medical SciencesTehranIran

Personalised recommendations