Advertisement

Effects of external heat/mass sources and withdrawal rates of crystals from a metastable liquid on the evolution of particulate assemblages

  • Eugenya V. MakoveevaEmail author
  • Dmitri V. Alexandrov
Regular Article
  • 15 Downloads
Part of the following topical collections:
  1. Microscopic Dynamics, Chaos and Transport in Nonequilibrium Processes

Abstract

A complete analytical solution of an integro-differential model describing the transient nucleation of solid particles and their subsequent growth at the intermediate stage of phase transitions in metastable systems is constructed. A functional Fokker–Plank type equation for the density distribution function is solved by the separation of variables method for the Weber–Volmer–Frenkel–Zeldovich nucleation kinetics. A non-linear integral equation with memory kernel connecting the density distribution function and the system supercooling/supersaturation is analytically solved on the basis of the saddle point method for the Laplace integral. The analytical solution obtained shows that the transient phase transition process attains its steady-state solution at large times. An exact analytical solution for the steady-state problem is found too. It is demonstrated that the crystal-size distribution function increases with increasing the intensity of external sources. In addition, the number of larger (smaller) particles decreases (increases) with increasing the withdrawal rate of crystals from a metastable liquid.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.W. Mullin, Crystallization (Butterworths, London, 1972) Google Scholar
  2. 2.
    P.A. Larsen, D.B. Patience, J.B. Rawlings, IEEE Control Syst. Mag. 26, 70 (2006) MathSciNetGoogle Scholar
  3. 3.
    D.M. Herlach, P.K. Galenko, D. Holland-Moritz, Metastable Solids from Undercooled Melts (Elsevier, Amsterdam, 2007) Google Scholar
  4. 4.
    V.V. Slezov, Kinetics of First-Order Phase Transitions (Wiley, Weinheim, 2009) Google Scholar
  5. 5.
    K.F. Kelton, A.L. Greer, Nucleation in Condensed Matter: Applications in Materials and Biology (Elsevier, Amsterdam, 2008) Google Scholar
  6. 6.
    Yu.A. Buyevich, V.V. Mansurov, J. Cryst. Growth. 104, 861 (1990) ADSCrossRefGoogle Scholar
  7. 7.
    Yu.A. Buyevich, V.V. Mansurov, I.A. Natalukha, Chem. Eng. Sci. 46, 2573 (1991) CrossRefGoogle Scholar
  8. 8.
    D.V. Alexandrov, Phys. Lett. A. 378, 1501 (2014) ADSCrossRefGoogle Scholar
  9. 9.
    D.V. Alexandrov, I.G. Nizovtseva, Proc. R. Soc. A. 470, 20130647 (2014) ADSCrossRefGoogle Scholar
  10. 10.
    D.V. Alexandrov, A.P. Malygin, J. Phys. A: Math. Theor. 46, 455101 (2013) ADSCrossRefGoogle Scholar
  11. 11.
    D.V. Alexandrov, Chem. Eng. Sci. 117, 156 (2014) CrossRefGoogle Scholar
  12. 12.
    D.A. Barlow, J. Cryst. Growth 311, 2480 (2009) CrossRefGoogle Scholar
  13. 13.
    D.A. Barlow, J. Cryst. Growth 470, 8 (2017) CrossRefGoogle Scholar
  14. 14.
    A.A. Ivanov, I.V. Alexandrova, D.V. Alexandrov, Phil. Trans. R. Soc. A 377, 20180215 (2019) CrossRefGoogle Scholar
  15. 15.
    V.A. Shneidman, Phys. Rev. E 82, 031603 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    V.A. Shneidman, Phys. Rev. E 84, 031602 (2011) ADSCrossRefGoogle Scholar
  17. 17.
    D.V. Alexandrov, I.G. Nizovtseva, Phil. Trans. R. Soc. A 377, 20180214 (2019) CrossRefGoogle Scholar
  18. 18.
    M. Herrmann, P. Laurençot, B. Niethammer, C. R. Acad. Sci. Paris Ser. I 347, 909 (2009) CrossRefGoogle Scholar
  19. 19.
    M. Herrmann, B. Niethammer, J.J.L. Velázquez, J. Differ. Equ. 247, 2282 (2009) ADSCrossRefGoogle Scholar
  20. 20.
    A.A. Lushnikov, J. Phys. A: Math. Theor. 44, 335001 (2011) MathSciNetCrossRefGoogle Scholar
  21. 21.
    V.A. Shneidman, Phys. Rev. E 88, 010401 (2013) ADSCrossRefGoogle Scholar
  22. 22.
    M.S. Veshchunov, V.I. Tarasov, Aerosol Sci. Technol. 48, 813 (2014) ADSCrossRefGoogle Scholar
  23. 23.
    D.V. Alexandrov, J. Phys. A: Math. Theor. 48, 035103 (2015) ADSCrossRefGoogle Scholar
  24. 24.
    O. Sotolongo-Costa, L.M. Gaggero-Sager, M.E. Mora-Ramos, Physica A 438, 74 (2015) ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    D.V. Alexandrov, J. Phys. Chem. Solids 91, 48 (2016) ADSCrossRefGoogle Scholar
  26. 26.
    C. Connaughton, A. Dutta, R. Rajesh, O. Zaboronski, EPL 117, 10002 (2017) ADSCrossRefGoogle Scholar
  27. 27.
    J. Orava, A.L. Greer, Acta Mater. 139, 226 (2017) CrossRefGoogle Scholar
  28. 28.
    D.V. Alexandrov, A.A. Ivanov, I.V. Alexandrova, J. Phys. A: Math. Theor. 52, 015101 (2019) ADSGoogle Scholar
  29. 29.
    M.V. Fedoruk, Saddle-point Method (Nauka, Moscow, 1977) Google Scholar
  30. 30.
    A. Erdelyi, Asymptotic Expansions (Dover, New York, 1956) Google Scholar
  31. 31.
    Yu.A. Buyevich, I.A. Natalukha, Chem. Eng. Sci. 49, 3241 (1994) CrossRefGoogle Scholar
  32. 32.
    Yu.A. Buyevich, A.O. Ivanov, Physica A 192, 375 (1993) ADSCrossRefGoogle Scholar
  33. 33.
    Yu.A. Buyevich, A.O. Ivanov, Physica A 193, 221 (1993) ADSCrossRefGoogle Scholar
  34. 34.
    A.O. Ivanov, A.Yu. Zubarev, Physica A 251, 348 (1998) ADSCrossRefGoogle Scholar
  35. 35.
    D.V. Alexandrov, A.A. Ivanov, Int. J. Heat Mass Trans. 52, 4807 (2009) CrossRefGoogle Scholar
  36. 36.
    D.V. Alexandrov, A.P. Malygin, Int. J. Heat Mass Trans. 54, 1144 (2011) CrossRefGoogle Scholar
  37. 37.
    D.V. Alexandrov, A.A. Ivanov, I.V. Alexandrova, Phil. Trans. R. Soc. A 376, 20170217 (2018) ADSCrossRefGoogle Scholar
  38. 38.
    Yu.A. Buyevich, N.A. Korolyova, I.A. Natalukha, Int. J. Heat Mass Trans. 36, 2223 (1993) CrossRefGoogle Scholar
  39. 39.
    Yu.A. Buyevich, N.A. Korolyova, I.A. Natalukha, Int. J. Heat Mass Trans. 36, 2233 (1993) CrossRefGoogle Scholar
  40. 40.
    Yu.A. Buyevich, Yu.M. Goldobin, G.P. Yasnikov, Int. J. Heat Mass Trans. 37, 3003 (1994) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical ModelingUral Federal UniversityEkaterinburgRussia

Personalised recommendations