Advertisement

The European Physical Journal Special Topics

, Volume 228, Issue 3, pp 703–712 | Cite as

Effect of different atmospheres on the synthesis of Ba2CuGe2O7 single crystals

  • Veronica GranataEmail author
  • Luisa Rocco
  • Alberto Ubaldini
  • Martin R. Lees
  • Rosalba Fittipaldi
  • Monica Ciomaga Hatnean
  • Sandro Pace
  • Geetha Balakrishnan
  • Antonio Vecchione
Regular Article
  • 15 Downloads
Part of the following topical collections:
  1. Superconductivity and Functional Oxides

Abstract

Morphological, compositional and magnetic properties of single crystals of Ba2CuGe2O7 grown in oxygen and in dry air have been investigated. It is shown that the use of different atmospheres influences the morphological and compositional characteristics, probably because of some secondary reactions, that occur on the surface of the sample when oxygen is used, but it does not change the structural and magnetic properties. In the case of samples grown in oxygen, a thin, dark superficial layer forms. In this layer impurity particles of BaCu2Ge2O7 are present, while the core is formed by pure Ba2CuGe2O7.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N.A. Spaldin, M. Fiebig, Science 309, 391 (2005) CrossRefGoogle Scholar
  2. 2.
    S.W. Cheong, M. Mostovoy, Nat. Mater. 6, 13 (2007) ADSCrossRefGoogle Scholar
  3. 3.
    S. Mühlbauer, S. Gvasaliya, E. Ressouche, E. Pomjakushina, A. Zheludev, Phys. Rev. B 86, 024417 (2012) ADSCrossRefGoogle Scholar
  4. 4.
    M. Tovar, R. Dinniebier, W. Eysel, Mater. Sci. Forum 278, 750 (1998) CrossRefGoogle Scholar
  5. 5.
    A. Zheludev, S. Maslov, G. Shirane, Phys. Rev. B 57, 2968 (1998) ADSCrossRefGoogle Scholar
  6. 6.
    A. Zheludev, G. Shirane, Y. Sasago, N. Kiode, K. Uchinokura, Phys. Rev. B 54, 15163 (1996) ADSCrossRefGoogle Scholar
  7. 7.
    A.N. Bogdanov, M. Wolf, K.-H. Muller, Phys. Rev. B 66, 214410 (2002) ADSCrossRefGoogle Scholar
  8. 8.
    A. Zheludev, S. Maslov, G. Shirane, Phys. Rev. B 59, 11973 (1999) CrossRefGoogle Scholar
  9. 9.
    S. Mühlbauer, S.N. Gvasaliya, E. Pomjakushina, A. Zheludev, Phys. Rev. B 84, 180406(R) (2011) CrossRefGoogle Scholar
  10. 10.
    P.I. Nabokin, D. Souptel, A.M. Balbashov, J. Cryst. Growth 250, 397 (2003) ADSCrossRefGoogle Scholar
  11. 11.
    W. Wan, X. Yan, X. Wu, Z. Zhang, B. Hu, J. Zhou, J. Cryst. Growth 219, 56 (2000) ADSCrossRefGoogle Scholar
  12. 12.
    S. Erdei, F. Ainger, Mater. Res. Soc. Symp. Proc. 329, 245 (1993) CrossRefGoogle Scholar
  13. 13.
    R. Raji, K.G. Gopchandran, J. Sci.: Adv. Mater. Devices 2, 51 (2017) Google Scholar
  14. 14.
    A.B. Djurišić, Y.H. Leung, K.H. Tam, L. Ding, W.K. Ge, H.Y. Chen, S. Gwo, Appl. Phys. Lett. 88, 103107 (2006) ADSCrossRefGoogle Scholar
  15. 15.
    A. Renaud, B. Chavillon, L. Cario, L. Le Pleux, N. Szuwarski, Y. Pellegrin, E. Blart, E. Gautron, F. Odobel, S. Jobic, J. Phys. Chem. C 117, 22478 (2013) CrossRefGoogle Scholar
  16. 16.
    B. Sasi, K.G. Gopchandran, P.K. Manoj, P. Koshy, P. Prabhakara Rao, V.K. Vaidyan, Vacuum 68, 149 (2002) ADSCrossRefGoogle Scholar
  17. 17.
    R. Fittipaldi, L. Rocco, M. Ciomaga Hatnean, V. Granata, M.R. Lees, G. Balakrishnan, A. Vecchione, J. Cryst. Growth 404, 223 (2014) ADSCrossRefGoogle Scholar
  18. 18.
    R.A. Young, in The Rietveld Method, IUCr Monographs on Crystallography (Oxford University Press, Oxford, U.K., 1993), Vol. 5 Google Scholar
  19. 19.
    V. Granata, A. Ubaldini, R. Fittipaldi, L. Rocco, S. Pace, A. Vecchione, J. Cryst. Growth 457, 128 (2017) ADSCrossRefGoogle Scholar
  20. 20.
    M. Sun, A.E. Nelson, J. Adjaye, J. Phys. Chem. B 110, 2310 (2006) CrossRefGoogle Scholar
  21. 21.
    A.J. Schwartz, M. Kumar, B. Adams, Electron Backscatter Diffraction in Material Science (1980) Google Scholar
  22. 22.
    A.J. Wilkinson, P.B. Hirsch, Micron 28, 279 (1997) CrossRefGoogle Scholar
  23. 23.
    E. Rudberg, J. Lempert, J. Chem. Phys. 3, 627 (1935) ADSCrossRefGoogle Scholar
  24. 24.
    K.T. Jacob, Y. Waseda, J. Less Common Metals 139, 249 (1988) CrossRefGoogle Scholar
  25. 25.
    H. N. Hersh, J. Am. Chem. Soc. 75, 1529 (1953) CrossRefGoogle Scholar
  26. 26.
    A.W. Searcy, J. Am. Chem. Soc. 74, 4789 (1952) CrossRefGoogle Scholar
  27. 27.
    T. Sata, K. Sakai, S. Tashiro, J. Am. Ceram. Soc. 74, 1445 (1991) CrossRefGoogle Scholar
  28. 28.
    L. Zhang, Z. Xu, J. Hazard. Mater. 312, 28 (2016) CrossRefGoogle Scholar
  29. 29.
    S.W. Strauss, Nucl. Sci. Eng. 12, 436 (1962) CrossRefGoogle Scholar
  30. 30.
    G. Wu, E. Yazhenskikh, K. Hack, E. Wosch, M. Müller, Fuel Process. Technol. 137, 93 (2015) CrossRefGoogle Scholar
  31. 31.
    H. Murakawa, Y. Onose, S. Miyahara, N. Furukawa, Y. Tokura, Phys. Rev. B 85, 174106 (2012) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di Fisica “E.R. Caianiello”, Universitá di SalernoFisciano, SalernoItaly
  2. 2.CNR-SPINFisciano, SalernoItaly
  3. 3.Department of PhysicsUniversity of WarwickCoventryUK

Personalised recommendations