The European Physical Journal Special Topics

, Volume 228, Issue 11, pp 2475–2490 | Cite as

Detecting the significant nodes in two-layer flow networks: an interlayer non-failure cascading effect perspective

  • Feng An
  • Xiangyun GaoEmail author
  • Jianhe Guan
  • Meihui Jiang
  • Qian Liu
Regular Article
Part of the following topical collections:
  1. Diffusion Dynamics and Information Spreading in Multilayer Networks


Detecting the significant nodes in multilayer networks is crucial for preventing the large-scale spread of disaster events. However, the existing model can hardly simulate the ubiquitous non-failure cascading effect process in social and economic systems. To solve this problem, first, we propose a mathematical method of constructing a two-layer network model. Then we define the non-failure cascading effect process in the two-layer network. Based on the model and spreading process, we propose a non-failure cascading effect index by using each node’s non-failure cascading affecting in uential degree on the two-layer network. We then applied the detecting model in theoretical two-layer networks. We find there exist significant nodes, and also exist several in uential factors of the interlayer cascading effect process. The detecting model is applied in the two-layer industrial input-output networks between the U.S. and China for testing the validity of the theoretical model. The hybrid network combination is relatively more sensitive to in uential factors; the significant nodes are more prominent in scale-free networks. Our research provides a solution for finding the significant nodes in two-layer social or economic networks based on the non-failure cascading effect process.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Andersson, P. Donalek, R. Farmer, N. Hatziargyriou, I. Kamwa, P. Kundur, N. Martins, J. Paserba, P. Pourbeik, J. Sanchez-Gasca, R. Schulz, A. Stankovic, C. Taylor, V. Vittal, IEEE Trans. Power Syst. 20, 1922 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    A.R. Mian, A. Sufi, Q. J. Econ. 124, 1449 (2009)CrossRefGoogle Scholar
  3. 3.
    Y. Han, C. Guo, S. Ma, D. Song, J. Mod. Power Syst. Clean Energy 6, 944 (2018)CrossRefGoogle Scholar
  4. 4.
    D. Helbing, D. Brockmann, T. Chadefaux, K. Donnay, U. Blanke, O. Woolley-Meza, M. Moussaid, A. Johansson, J. Krause, S. Schutte, M. Perc, J. Stat. Phys. 158, 735 (2015)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Y. Demyanyk, O. Van Hemert, Rev. Financial Stud. 24, 1848 (2011)CrossRefGoogle Scholar
  6. 6.
    S.H. Strogatz, Nature 410, 268 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    R. Albert, A.L. Barabasi, Rev. Mod. Phys. 74, 47 (2002)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    M.E.J. Newman, SIAM Rev. 45, 167 (2003)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    S. Brin, L. Page, Comput. Netw. ISDN Syst. 30, 107 (1998)CrossRefGoogle Scholar
  10. 10.
    L.Y. Lu, D.B. Chen, X.L. Ren, Q.M. Zhang, Y.C. Zhang, T. Zhou, Phys. Rep. 650, 1 (2016)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Phys. Rev. Lett. 96, 040601 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    M. Kitsak, L.K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H.E. Stanley, H.A. Makse, Nat. Phys. 6, 888 (2010)CrossRefGoogle Scholar
  13. 13.
    J.E. Hirsch, Proc. Natl. Acad. Sci. USA 102, 16569 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    Z. Gao, W. Dang, C. Mu, Y. Yang, S. Li, C. Grebogi, IEEE Trans. Ind. Inf. 14, 3982 (2018)CrossRefGoogle Scholar
  15. 15.
    Z.-K. Gao, Q. Cai, Y.-X. Yang, W.-D. Dang, S.-S. Zhang, Sci. Rep. 6, 35622 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    Z.-K. Gao, Y.-X. Yang, Europhys. Lett. 109, 30005 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    L. Lu, T. Zhou, Q.M. Zhang, H.E. Stanley, Nat. Commun. 7, 10168 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    Q. Ji, E. Bouri, D. Roubaud, Int. Rev. Financ. Anal. 57, 1 (2018)CrossRefGoogle Scholar
  19. 19.
    B.-Y. Liu, Q. Ji, Y. Fan, Quant. Finance 17, 437 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    M. Jalili, M. Perc, J. Complex Netw. 5, 665 (2017)MathSciNetGoogle Scholar
  21. 21.
    B. Podobnik, D. Horvatic, T. Lipic, M. Perc, J.M. Buldu, H.E. Stanley, J.R. Soc, Interface 12, 20150770 (2015)Google Scholar
  22. 22.
    G. Bianconi, J. Stat. Mech. Theory Exp. 3, 034001 (2017)CrossRefGoogle Scholar
  23. 23.
    J.E. Hirsch, Proc. Natl. Acad. Sci. USA 102, 16569 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    C.D. Brummitt, R.M. D’Souza, E.A. Leicht, Proc. Natl. Acad. Sci. USA 109, E680 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    S.V. Buldyrev, R. Parshani, G. Paul, H.E. Stanley, S. Havlin, Nature 464, 1025 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    S. Hong, J. Zhu, L.A. Braunstein, T. Zhao, Q. You, J. Stat. Mech. Theory Exp. 2017, 103208 (2017)CrossRefGoogle Scholar
  27. 27.
    W. Li, A. Bashan, S.V. Buldyrev, H.E. Stanley, S. Havlin, Phys. Rev. Lett. 108, 228702 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    L.D. Valdez, M.A. Di Muro, L.A. Braunstein, J. Stat. Mech. Theory Exp. 2016, 093402 (2016)CrossRefGoogle Scholar
  29. 29.
    D. Vaknin, M.M. Danziger, S. Havlin, New J. Phys. 19, 073037 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    C. Chen, J. He, N. Bliss, H. Tong, IEEE Trans. Knowl. Data Eng. 29, 2332 (2017)CrossRefGoogle Scholar
  31. 31.
    L. Jin, X.J. Wang, Z. Yong, J. Lei, J.W. Xiao, Int. J. Mod. Phys. 28, 1750050 (2017)CrossRefGoogle Scholar
  32. 32.
    M.P. Timmer, E. Dietzenbacher, B. Los, R. Stehrer, G.J. de Vries, Rev. Int. Econ. 23, 575 (2015)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Feng An
    • 1
    • 2
  • Xiangyun Gao
    • 1
    • 2
    Email author
  • Jianhe Guan
    • 3
  • Meihui Jiang
    • 1
    • 2
  • Qian Liu
    • 3
  1. 1.School of Economics and Management, China University of GeosciencesBeijingP.R. China
  2. 2.Key Laboratory of Carrying Capacity Assessment for Resource and Environment, Ministry of Natural ResourcesBeijingP.R. China
  3. 3.School of Information Engineering, China University of GeosciencesBeijingP.R. China

Personalised recommendations