Advertisement

The European Physical Journal Special Topics

, Volume 228, Issue 3, pp 631–641 | Cite as

Spin–orbit coupling effects on the electronic properties of the pressure-induced superconductor CrAs

  • Giuseppe CuonoEmail author
  • Carmine Autieri
  • Giuseppe Guarnaccia
  • Adolfo Avella
  • Mario Cuoco
  • Filomena Forte
  • Canio Noce
Regular Article
  • 19 Downloads
Part of the following topical collections:
  1. Superconductivity and Functional Oxides

Abstract

We present the effects of spin-orbit coupling on the low-energy bands and Fermi surface of the recently discovered pressure-induced superconductor CrAs. We apply the Löwdin down-folding procedure to a tight-binding hamiltonian that includes the intrinsic spin-orbit interaction, originating from the Cr 3d electrons as well as from As 4p ones. Our results indicate that As contributions have negligible effects, whereas the modifications to the band structure and the Fermi surface can be mainly ascribed to the Cr contribution. We show that the inclusion of the spin-orbit interaction allows for a selective removal of the band degeneracy due to the crystal symmetries, along specific high symmetry lines. Such release of the band degeneracy naturally determines a reconstruction of the Fermi surface, including the possibility of changing the number of pockets.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Goll, Unconventional Superconductors, in Springer Tracts in Modern Physics (Springer, Berlin, 2006) Google Scholar
  2. 2.
    M.R. Norman, Science 332, 196 (2011) ADSCrossRefGoogle Scholar
  3. 3.
    G.R. Stewart, Rev. Mod. Phys. 56, 755 (1984) ADSCrossRefGoogle Scholar
  4. 4.
    A. Amato, Rev. Mod. Phys. 69, 1119 (1997) ADSCrossRefGoogle Scholar
  5. 5.
    R. Movshovich, M. Jaime, J.D. Thompson, C. Petrovic, Z. Fisk, P.G. Pagliuso, J.L. Sarrao, Phys. Rev. Lett. 86, 5152 (2001) ADSCrossRefGoogle Scholar
  6. 6.
    A. Avella, F. Mancini, R. Hayn, Eur. Phys. J. B 37, 465 (2004) ADSCrossRefGoogle Scholar
  7. 7.
    D.J. Van Harlingen, Rev. Mod. Phys. 67, 515 (1995) ADSCrossRefGoogle Scholar
  8. 8.
    T. Timusk, B. Statt, Rep. Prog. Phys. 62, 61 (1999) ADSCrossRefGoogle Scholar
  9. 9.
    M.R. Norman, D. Pines, C. Kallin, Adv. Phys. 54, 715 (2005) ADSCrossRefGoogle Scholar
  10. 10.
    P.A. Lee, N. Nagaosa, X.G. Wen, Rev. Mod. Phys. 78, 17 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    N.P. Armitage, P. Fournier, R.L. Greene, Rev. Mod. Phys. 82, 2421 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    T.M. Rice, K.Y. Yang, F.C. Zhang, Rep. Prog. Phys. 75, 016502 (2012) ADSCrossRefGoogle Scholar
  13. 13.
    A. Avella, Adv. Cond. Matter Phys. 2014, 515698 (2014) Google Scholar
  14. 14.
    B. Keimer, S.A. Kivelson, M.R. Norman, S. Uchida, J. Zaanen, Nature 518, 179 (2015) ADSCrossRefGoogle Scholar
  15. 15.
    A. Avella, C. Buonavolontà, A. Guarino, M. Valentino, A. Leo, G. Grimaldi, C. de Lisio, A. Nigro, G. Pepe, Phys. Rev. B 94, 115426 (2016) ADSCrossRefGoogle Scholar
  16. 16.
    F. Novelli, G. Giovannetti, A. Avella, F. Cilento, L. Patthey, M. Radovic, M. Capone, F. Parmigiani, D. Fausti, Phys. Rev. B 95, 174524 (2017) ADSCrossRefGoogle Scholar
  17. 17.
    A. Avella, S. Krivenko, F. Mancini, N.M. Plakida, J. Magn. Magn. Mater. 272, 456 (2004) ADSCrossRefGoogle Scholar
  18. 18.
    S. Krivenko, A. Avella, F. Mancini, N.M. Plakida, Physica B 359, 666 (2005) ADSCrossRefGoogle Scholar
  19. 19.
    A. Avella, F. Mancini, J. Phys.: Condens. Matter 19, 255209 (2007) ADSGoogle Scholar
  20. 20.
    A. Avella, F. Mancini, J. Phys.: Condens. Matter 21, 254209 (2009) ADSGoogle Scholar
  21. 21.
    A. Avella, F. Mancini, F.P. Mancini, E. Plekhanov, Eur. Phys. J. B 86, 265 (2013) ADSCrossRefGoogle Scholar
  22. 22.
    A.P. Mackenzie, Y. Maeno, Rev. Mod. Phys. 75, 657 (2003) ADSCrossRefGoogle Scholar
  23. 23.
    S.G. Ovchinnikov, Phys.-Uspekhi 46, 21 (2003) ADSCrossRefGoogle Scholar
  24. 24.
    M. Cuoco, F. Forte, C. Noce, Phys. Rev. B 73, 094428 (2006) ADSCrossRefGoogle Scholar
  25. 25.
    M. Cuoco, F. Forte, C. Noce, Phys. Rev. B 74, 195124 (2006) ADSCrossRefGoogle Scholar
  26. 26.
    F. Forte, M. Cuoco, C. Noce, Phys. Rev. B 82, 155104 (2010) ADSCrossRefGoogle Scholar
  27. 27.
    C. Autieri, M. Cuoco, C. Noce, Phys. Rev. B 85, 075126 (2012) ADSCrossRefGoogle Scholar
  28. 28.
    M. Malvestuto, V. Capogrosso, E. Carleschi, L. Galli, E. Gorelov, E. Pavarini, R. Fittipaldi, F. Forte, M. Cuoco, A. Vecchione, F. Parmigiani, Phys. Rev. B 88, 195143 (2013) ADSCrossRefGoogle Scholar
  29. 29.
    C. Autieri, M. Cuoco, C. Noce, Phys. Rev. B 89, 075102 (2014) ADSCrossRefGoogle Scholar
  30. 30.
    V. Granata, L. Capogna, F. Forte, M.B. Lepetit, R. Fittipaldi, A. Stunault, M. Cuoco, A. Vecchione, Phys. Rev. B 93, 115128 (2016) ADSCrossRefGoogle Scholar
  31. 31.
    I.I. Mazin, D.J. Singh, M.D. Johannes, M.H. Du, Phys. Rev. Lett. 101, 057003 (2008) ADSCrossRefGoogle Scholar
  32. 32.
    G.R. Stewart, Rev. Mod. Phys. 83, 1589 (2011) ADSCrossRefGoogle Scholar
  33. 33.
    C.M. Varma, Phys. Rev. Lett. 83, 3538 (1999) ADSCrossRefGoogle Scholar
  34. 34.
    C. Noce, G. Busiello, M. Cuoco, Europhys. Lett. 51, 195 (2000) ADSCrossRefGoogle Scholar
  35. 35.
    C. Noce, A. Vecchione, M. Cuoco, A. Romano (Eds.) Ruthenate and Rutheno-Cuprate Materials Unconventional Superconductivity, Magnetism and Quantum Phase Transitions (Springer Verlag, Berlin, 2002) Google Scholar
  36. 36.
    D. van der Marell, H.J.A. Molegraaf, J. Zaanen, Z. Nussinov, F. Carbone, A. Damascelli, H. Eisaki, M. Greven, P.H. Kes, M. Li, Nature 425, 271 (2003) ADSCrossRefGoogle Scholar
  37. 37.
    S. Jiang, H. Xing, G. Xuan, C. Wang, Z. Ren, C. Feng, J. Dai, Z. Xu, G. Cao, J. Phys.: Condens. Matter 21, 382203 (2009) ADSGoogle Scholar
  38. 38.
    T. Shibauchi, A. Carrington, Y. Matsuda, Annu. Rev. Condens. Matter Phys. 5, 113 (2014) ADSCrossRefGoogle Scholar
  39. 39.
    S. Seo, E. Park, E.D. Bauer, F. Ronning, J.N. Kim, J.H. Shim, J.D. Thompson, T. Park, Nat. Commun. 6, 6433 (2015) ADSCrossRefGoogle Scholar
  40. 40.
    W. Wu, J. Cheng, K. Matsubayashi, P. Kong, F. Lin, C. Jin, N. Wang, Y. Uwatoko, J. Luo, Nat. Commun. 5, 5508 (2014) ADSCrossRefGoogle Scholar
  41. 41.
    H. Kotegawa, S. Nakahara, H. Tou, H. Sugawara, J. Phys. Soc. Jpn. 83, 093702 (2014) ADSCrossRefGoogle Scholar
  42. 42.
    W. Wu, X. Zhang, Z. Yin, P. Zheng, N. Wang, J. Luo, Sci. China Phys. Mech. Astron. 53, 1207 (2010) ADSCrossRefGoogle Scholar
  43. 43.
    A. Nigro, P. Marra, C. Autieri, W. Wu, J. G. Cheng, J. Luo, C. Noce, Europhys. Lett. 125, 57002 (2019) ADSCrossRefGoogle Scholar
  44. 44.
    M. Matsuda, F.K. Lin, R. Yu, J.G. Cheng, W. Wu, J.P. Sun, J.H. Zhang, P.J. Sun, K. Matsubayashi, T. Miyake, T. Kato, J.Q. Yan, M.B. Stone, Q. Si, J.L. Luo, Y. Uwatoko, Phys. Rev. X 8, 031017 (2018) Google Scholar
  45. 45.
    L. Keller, J.S. White, M. Frontzek, P. Babkevich, M.A. Susner, Z.C. Sims, A.S. Sefat, H.M. Ronnow, Ch. Rüegg, Phys. Rev. B 91, 020409(R) (2015) ADSCrossRefGoogle Scholar
  46. 46.
    Y. Shen, Q. Wang, Y. Hao, B. Pan, Y. Feng, Q. Huang, L.W. Harriger, J.B. Leao, Y. Zhao, R.M. Chisnell, J.W. Lynn, H. Cao, J. Hu, J. Zhao, Phys. Rev. B 93, 060503(R) (2016) ADSCrossRefGoogle Scholar
  47. 47.
    S. Park, S. Shin, S.I. Kim, J.D. Thompson, T. Park, arXiv:1804.03816 (2018)
  48. 48.
    H. Kotegawa, S. Nakahara, R. Akamatsu, H. Tou, H. Sugawara, H. Harima, Phys. Rev. Lett. 114, 117002 (2015) ADSCrossRefGoogle Scholar
  49. 49.
    R. Khasanov, Z. Guguchia, I. Eremin, H. Luetkens, A. Amato, P.K. Biswas, C. Rüegg, M.A. Susner, A.S. Sefat, N.D. Zhigadlo, E. Morenzoni, Sci. Rep. 5, 13788 (2015) ADSCrossRefGoogle Scholar
  50. 50.
    C. Autieri, C. Noce, Philos. Mag. 97, 3276 (2017) ADSCrossRefGoogle Scholar
  51. 51.
    P.O. Löwdin, J. Chem. Phys. 18, 365 (1950) ADSCrossRefGoogle Scholar
  52. 52.
    O.K. Andersen, A.I. Liechtenstein, O. Jepsen, F. Paulsen, J. Phys. Chem. Solids 56, 1573 (1995) ADSCrossRefGoogle Scholar
  53. 53.
    C. Noce, M. Cuoco, Phys. Rev. B 59, 2659 (1999) ADSCrossRefGoogle Scholar
  54. 54.
    C. Autieri, G. Cuono, F. Forte, C. Noce, J. Phys.: Condens. Matter 29, 224004 (2017) ADSGoogle Scholar
  55. 55.
    C. Autieri, G. Cuono, F. Forte, C. Noce, J. Phys.: Conf. Ser. 969, 012106 (2018) Google Scholar
  56. 56.
    Q. Niu, W.C. Yu, K.Y. Yip, Z.L. Lim, H. Kotegawa, E. Matsuoka, H. Sugawara, H. Tou, Y. Yanase, S.K. Goh, Nat. Commun. 8 15358 (2017) ADSCrossRefGoogle Scholar
  57. 57.
    M. Edelmann, G. Sangiovanni, M. Capone, L. de’ Medici, Phys. Rev. B 95, 205118 (2017) ADSCrossRefGoogle Scholar
  58. 58.
    G. Cuono, C. Autieri, F. Forte, G. Busiello, M.T. Mercaldo, A. Romano, C. Noce, A. Avella, AIP Adv. 8, 101312 (2018) ADSCrossRefGoogle Scholar
  59. 59.
    G. Cuono, C. Autieri, F. Forte, M.T. Mercaldo, A. Romano, A. Avella, C. Noce, arXiv:1812.01457v2 [cond-mat.supr-con]
  60. 60.
    J. Friedel, P. Lenglart, G. Leman, J. Phys. Chem. Solids 25, 781 (1964) ADSCrossRefGoogle Scholar
  61. 61.
    W. Setyawan, S. Curtarolo, Comput. Mater. Sci. 49, 299 (2010) CrossRefGoogle Scholar
  62. 62.
    C. Autieri, E. Koch, E. Pavarini, Phys. Rev. B 89, 155109 (2014) ADSCrossRefGoogle Scholar
  63. 63.
    D.F. Shao, X. Luo, W.J. Lu, L. Hu, X.D. Zhu, W.H. Song, X.B. Zhu, Y.P. Sun, Sci. Rep. 6, 21484 (2016) ADSCrossRefGoogle Scholar
  64. 64.
    R. Heid, K.P. Bohnen, I.Y. Sklyadneva, E.V. Chulkov, Phys. Rev. B 81, 174527 (2010) ADSCrossRefGoogle Scholar
  65. 65.
    N.A. Smirnov, Phys. Rev. B 97, 094114 (2018) ADSCrossRefGoogle Scholar
  66. 66.
    Z. Liu, W. Wu, Z. Zhao, H. Zhao, J. Cui, P. Shan, J. Zhang, C. Yang, P. Sun, Y. Sui, J. Cheng, L. Lu, J. Luo, G. Liu, arXiv:1901.04662v1 [cond-mat.supr-con]

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Giuseppe Cuono
    • 1
    Email author
  • Carmine Autieri
    • 2
  • Giuseppe Guarnaccia
    • 1
  • Adolfo Avella
    • 1
    • 3
    • 4
  • Mario Cuoco
    • 1
    • 3
  • Filomena Forte
    • 1
    • 3
  • Canio Noce
    • 1
    • 3
  1. 1.Dipartimento di Fisica “E.R. Caianiello”, Università degli Studi di SalernoFisciano (SA)Italy
  2. 2.International Research Centre Magtop, Institute of Physics, Polish Academy of SciencesWarsawPoland
  3. 3.Consiglio Nazionale delle Ricerche CNR-SPIN, UOS SalernoFisciano (Salerno)Italy
  4. 4.Unità CNISM di Salerno, Università degli Studi di SalernoFisciano (SA)Italy

Personalised recommendations