Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 14, pp 1591–1601 | Cite as

Vacancy defect centers in diamond: influence of surface termination

  • Jens Hertkorn
  • Jörg Wrachtrup
  • Maria FytaEmail author
Regular Article
  • 81 Downloads
Part of the following topical collections:
  1. Particle Methods in Natural Science and Engineering

Abstract

Defect centers such as the negatively charged nitrogen- vacancy defect and the neutral silicon-vacancy and germanium vacancy defect in tiny spherical nanodiamonds are investigated in this work. Quantum mechanical simulations based on density functional theory are performed in order to assess the influence of the surface termination and the defect type in the electronic structure of the defective nanodiamonds. Three elements are taken for the surface termination: hydrogen, nitrogen, and oxygen. Specific insight is given on the relative shift in the electronic energy levels with respect to ideal nanodiamonds. The variation of the charge density around the defect and the spatial distribution of the frontier orbitals of the defective nanodiamonds are analyzed. In the end, this work provides a comparative analysis of the termination effect on the three types of vacancy defect centers for their deeper understanding in view of their technological relevance.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.D. Gruen, I. Buckley-Golder, MRS Bull. 23, 16 (1998)Google Scholar
  2. 2.
    C.E. Troupe, I.C. Drummond, C. Graham, J. Grice, P. John, J.I.B. Wilson, M.G. Jubber, N.A. Morrison, Diamond Relat. Mater. 7, 575 (1998)ADSGoogle Scholar
  3. 3.
    S. Xie, G. Shafer, C.G. Wilson, H.B. Martin, Diamond Relat. Mater. 15, 225 (2006)ADSGoogle Scholar
  4. 4.
    E. Ampem-Lassen, D.A. Simpson, B.C. Gibson, S. Trpkovski, F.M. Hossain, S.T. Huntington, K. Ganesan, L.C.L. Hollenberg, S. Prawer, Opt. Express 17, 11287 (2009)ADSGoogle Scholar
  5. 5.
    T. Schroder, A.W. Schell, G. Kewes, T. Aichele, O. Benson, Nano Lett. 11, 198 (2010)ADSGoogle Scholar
  6. 6.
    A.D. Greentree, P. Olivero, M. Draganski, E. Trajkov, J.R. Rabeau, P. Reichart, B.C. Gibson, S. Rubanov, S.T. Huntington, D.N. Jamieson, S. Prawer, J. Phys.: Condens. Matter 18, S825 (2006)ADSGoogle Scholar
  7. 7.
    N. Kumar, H. Schmidt, C. Xie, Solid State Tech. 38, 71 (1995)Google Scholar
  8. 8.
    Y. Zhu, J. Li, W. Li, Y. Zhang, X. Yang, N. Chen, Y. Sun, Y. Zhao, C. Fan, Q. Huang, Theranostics 2, 302 (2012)Google Scholar
  9. 9.
    A.M. Schrand, L. Dai, J.J. Schlager, S.M. Hussain, E. Osawa, Diamond Relat. Mater. 16, 2118 (2007)ADSGoogle Scholar
  10. 10.
    A.M. Schrand, S.A.C. Hens, O.A. Shenderova, Crit. Rev. Solid State Mater. Sci. 34, 18 (2009)ADSGoogle Scholar
  11. 11.
    K. Turcheniuk, V.N. Mochalin, Nanotechnology 28, 252001 (2017)ADSGoogle Scholar
  12. 12.
    V. Vaijayanthimala, P.Y. Cheng, S.H. Yeh, K.K. Liu, C.-H. Hsiao, J.I. Chao, H.C. Chang, Biomaterials 33, 7794 (2012)Google Scholar
  13. 13.
    D. Ho, ACS Nano. 3, 3825 (2009)Google Scholar
  14. 14.
    V.N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, Nat. Nanotechnol. 7, 11 (2012)ADSGoogle Scholar
  15. 15.
    V.M. Acosta, C. Santori, A. Faraon, Z. Huang, K.-M. C. Fu, A. Stacey, D.A. Simpson, K. Ganesan, S. Tomljenovic-Hanic, A.D. Greentree, S. Prawer, R.G. Beausoleil, Phys. Rev. Lett. 108, 206401 (2012)ADSGoogle Scholar
  16. 16.
    L. Childress, M.V. Gurudev Dutt, J.M. Taylor, A.S. Zibrov, F. Jelezko, J. Wrachtrup, P.R. Hemmer, M.D. Lukin, Science 314, 281 (2006)ADSGoogle Scholar
  17. 17.
    M.V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A.S. Zibrov, P.R. Hemmer, M.D. Lukin, Science 316, 1312 (2007)Google Scholar
  18. 18.
    J. Cai, F. Jelezko, M.B. Plenio, A. Retzker, New J. Phys. 15, 013020 (2013)ADSGoogle Scholar
  19. 19.
    A. Dräbenstedt, L. Fleury, C. Tietz, F. Jelezko, S. Kilin, A. Nizovtzev, J. Wrachtrup, Phys. Rev. B 60, 11503 (1999)ADSGoogle Scholar
  20. 20.
    S.R. Hemelaar, S. Nagl, F. Bigot, M.M. Rodríguez-García, M.l P. de Vries, M. Chipaux, R. Schirhagl, Microchim. Acta 184, 1001 (2017)Google Scholar
  21. 21.
    A. Nagl, S.R. Hemelaar, R. Schirhagl, Anal. Bioanal. Chem. 407, 7521 (2015)Google Scholar
  22. 22.
    L. Marcon, F. Riquet, D. Vicogne, S. Szunerits, J.-F. Bodart, R. Boukherroub, J. Mater. Chem. 20, 8064 (2010)Google Scholar
  23. 23.
    M. Kaviani, P. Deák, B. Aradi, T. Frauenheim, J.-P. Chou, A. Gali, Nano Lett. 14, 4772 (2014)ADSGoogle Scholar
  24. 24.
    A. Gali, Phys. Rev. B 79, 235210 (2009)ADSGoogle Scholar
  25. 25.
    C. Bradac, T. Gaebel, N. Naidoo, J. R. Rabeau, A.S. Barnard, Nano Lett. 9, 3555 (2009)ADSGoogle Scholar
  26. 26.
    C. Hepp, T. Müller, V. Waselowski, J.N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J.R. Maze, M. Atatüre, C. Becher, Phys. Rev. Lett. 112, 036405 (2014)ADSGoogle Scholar
  27. 27.
    U.F.S. D’Haenens-Johansson, A.M. Edmonds, B.L. Green, M. E. Newton, G. Davies, P.M. Martineau, R.U.A. Khan, D.J. Twitchen, Phys. Rev. B 84 (2011)Google Scholar
  28. 28.
    I.I. Vlasov, A.A. Shiryaev, T. Rendler, S. Steinert, S.Y. Lee, D. Antonov, M. Vörös, F. Jelezko, A.V. Fisenko, L.F. Semjonova, J. Biskupek, U. Kaiser, O.I. Lebedev, I. Sildos, P.R. Hemmer, V.I. Konov, A. Gali, J. Wrachtrup, Nat. Nanotechnol. 9, 54 (2014)ADSGoogle Scholar
  29. 29.
    T. Iwasaki, F. Ishibashi, Y. Miyamoto, Y. Doi, S. Kobayashi, T. Miyazaki, K. Tahara, K.D. Jahnke, L.J. Rogers, B. Naydenov, F. Jelezko, S. Yamasaki, S. Nagamachi, T. Inubushi, N. Mizuochi, M. Hatano, Sci. Rep. 5, 12882 (2015)ADSGoogle Scholar
  30. 30.
    T. Gaebel, I. Popa, A. Gruber, M. Domhan, F. Jelezko, J. Wrachtrup, New J. Phys. 6, 98 (2004)ADSGoogle Scholar
  31. 31.
    V. Nadolinny, A. Komarovskikh, Y. Palyanov, Crystals 7, 237 (2017)Google Scholar
  32. 32.
    V.P. Samoilovich, M.I. Bezrukov, G.N. Butuzov, JETP Lett. 14, 379 (1971)ADSGoogle Scholar
  33. 33.
    S.V. Samsonenko, N.D. Tokii, V.V. Gorban, Fiz. Tver. Tela 33, 2496 (1991)Google Scholar
  34. 34.
    U.F.S. D’Haenens-Johansson, A.M. Edmonds, B.L. Green, M.E. Newton, G. Davies, P.M. Martineau, R.U.A. Khan, D.J. Twitchen, Phys. Rev. B 84, 245208 (2011)ADSGoogle Scholar
  35. 35.
    A. Sipahigil, K.D. Jahnke, L.J. Rogers, T. Teraji, J. Isoya, A.S. Zibrov, F. Jelezko, M.D. Lukin, Phys. Rev. Lett. 113, 113602 (2014)ADSGoogle Scholar
  36. 36.
    T. Müller, C. Hepp, B. Pingault, E. Neu, S. Gsell, M. Schreck, H. Sternschulte, D. Steinmüller-Nethl, C. Becher, M. Atatüre, Nat. Commun. 5, 3328 (2014)Google Scholar
  37. 37.
    L.J. Rogers, K.D. Jahnke, M.H. Metsch, A. Sipahigil, J.M. Binder, T. Teraji, H. Sumiya, J. Isoya, M.D. Lukin, P. Hemmer, et al., Phys. Rev. Lett. 113, 263602 (2014)ADSGoogle Scholar
  38. 38.
    E.A. Ekimov, S.G. Lyapin, K.N. Boldyrev, M.V. Kondrin, R. Khmelnitskiy, V.A. Gavva, T.V. Kotereva, M.N. Popova, JETP Lett. 102, 701 (2015)ADSGoogle Scholar
  39. 39.
    P. Siyushev, M.H. Metsch, A. Ijaz, J.M. Binder, M.K. Bhaskar, D.D. Sukachev, A. Sipahigil, R.E. Evans, C.T. Nguyen, M.D. Lukin, et al. , Phys. Rev. B 96, 081201 (2017)ADSGoogle Scholar
  40. 40.
    M.K. Bhaskar, D.D. Sukachev, A. Sipahigil, R.E. Evans, M.J. Burek, C.T. Nguyen, L.J. Rogers, P. Siyushev, M.H. Metsch, H. Park, et al., Phys. Rev. Lett. 118, 223603 (2017)ADSGoogle Scholar
  41. 41.
    J. Jiang, L. Sun, B. Gao, Z. Wu, W. Lu, J. Yang, Y. Luo, J. Appl. Phys. 108, 094303 (2010)ADSGoogle Scholar
  42. 42.
    W. Hu, Z. Li, J. Yang, Comput. Theor. Chem. 1021, 49 (2013)Google Scholar
  43. 43.
    J.Y. Raty, G. Galli, C. Bostedt, T.W. van Buuren, L.J. Terminello, Phys. Rev. Lett. 90, 4 (2003)Google Scholar
  44. 44.
    T.M. Willey, C. Bostedt, T. Van Buuren, J.E. Dahl, S.G. Liu, R.M.K. Carlson, L.J. Terminello, T. Möller, Phys. Rev. Lett. 95, 113401 (2005)ADSGoogle Scholar
  45. 45.
    M.V. Hauf, B. Grotz, B. Naydenov, M. Dankerl, S. Pezzagna, J. Meijer, F. Jelezko, J. Wrachtrup, M. Stutzmann, F. Reinhard, J.A. Garrido, Phys. Rev. B 83, 081304 (2011)ADSGoogle Scholar
  46. 46.
    A. Gali, M. Fyta, E. Kaxiras, Phys. Rev. B 77, 155206 (2008)ADSGoogle Scholar
  47. 47.
    J.P. Goss, R. Jones, S.J. Breuer, P.R. Briddon, S. Öberg, Phys. Rev. Lett. 77, 3041 (1996)ADSGoogle Scholar
  48. 48.
    G.C. McIntosh, M. Yoon, S. Berber, D. Tománek, Phys. Rev. B 70, 045401 (2004)ADSGoogle Scholar
  49. 49.
    J. Furthmüller, J. Hafner, G. Kresse, Phys. Rev. B 53, 7334 (1996)ADSGoogle Scholar
  50. 50.
    A. Nagl, S.R. Hemelaar, R. Schirhagl, Anal. Bioanal. Chem. 407, 7521 (2015)Google Scholar
  51. 51.
    P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)ADSGoogle Scholar
  52. 52.
    W. Kohn, L. J. Sham, Phys. Rev. 140, A1133 (1965)ADSGoogle Scholar
  53. 53.
    J.M. Soler, E. Artacho, J.D. Gale, A. Garca, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys. 14, 2745 (2002)Google Scholar
  54. 54.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSGoogle Scholar
  55. 55.
    N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)ADSGoogle Scholar
  56. 56.
    D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45, 566 (1980)ADSGoogle Scholar
  57. 57.
    J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)ADSGoogle Scholar
  58. 58.
    Virtualnanolab website, https://quantumwise.com/products/vnl, Accessed: 2017-12-30
  59. 59.
    P. Han, D. Antonov, J. Wrachtrup, G. Bester, Phys. Rev. B 95, 195428 (2017)ADSGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Computational Physics, University of StuttgartStuttgartGermany
  2. 2.Center for Applied Quantum Technologies and 3rd Physics Institute, University of StuttgartStuttgartGermany

Personalised recommendations