Advertisement

The European Physical Journal Special Topics

, Volume 228, Issue 3, pp 689–696 | Cite as

Towards the insulator-to-metal transition at the surface of ion-gated nanocrystalline diamond films

  • Erik Piatti
  • Francesco Galanti
  • Giulia Pippione
  • Alberto Pasquarelli
  • Renato S. GonnelliEmail author
Regular Article
  • 6 Downloads
Part of the following topical collections:
  1. Superconductivity and Functional Oxides

Abstract

Hole doping can control the conductivity of diamond either through boron substitution, or carrier accumulation in a field-effect transistor. In this work, we combine the two methods to investigate the insulator-to-metal transition at the surface of nanocrystalline diamond films. The finite boron doping strongly increases the maximum hole density which can be induced electrostatically with respect to intrinsic diamond. The ionic gate pushes the conductivity of the film surface away from the variable-range hopping regime and into the quantum critical regime. However, the combination of the strong intrinsic surface disorder due to a non-negligible surface roughness, and the introduction of extra scattering centers by the ionic gate, prevents the surface accumulation layer to reach the metallic regime.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.S. Pan, D.R. Kania, Diamond: Electronic Properties and Applications (Kluwer Academic Publishers, 1995) Google Scholar
  2. 2.
    E.A. Ekimov et al., Nature 428, 542 (2004) ADSCrossRefGoogle Scholar
  3. 3.
    E. Bustarret, Phys. Status Solidi A 205, 997 (2008) ADSCrossRefGoogle Scholar
  4. 4.
    Y. Takano et al., Appl. Phys. Lett. 85, 2851 (2004) ADSCrossRefGoogle Scholar
  5. 5.
    H. Okazaki et al., Appl. Phys. Lett. 106, 052601 (2015) ADSCrossRefGoogle Scholar
  6. 6.
    L. Boeri, J. Kortus, O.K. Andersen, Phys. Rev. Lett. 93, 237002 (2004) ADSCrossRefGoogle Scholar
  7. 7.
    K.-W. Lee, W.E. Pickett, Phys. Rev. Lett. 93, 237003 (2004) ADSCrossRefGoogle Scholar
  8. 8.
    L. Boeri, J. Kortus, O.K. Andersen, J. Phys. Chem. Solids 67, 552 (2006) ADSCrossRefGoogle Scholar
  9. 9.
    F. Giustino et al., Phys. Rev. Lett. 98, 047005 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    K. Nakamura et al., Phys. Rev. B 87, 214506 (2013) ADSCrossRefGoogle Scholar
  11. 11.
    K. Ueno et al., J. Phys. Soc. Jpn. 83, 032001 (2014) ADSCrossRefGoogle Scholar
  12. 12.
    M. Dankerl et al., Phys. Rev. Lett. 106, 196103 (2011) ADSCrossRefGoogle Scholar
  13. 13.
    M. Dankerl et al., Appl. Phys. Lett. 100, 023510 (2012) ADSCrossRefGoogle Scholar
  14. 14.
    T. Yamaguchi et al., J. Phys. Soc. Jpn. 82, 074718 (2013) ADSCrossRefGoogle Scholar
  15. 15.
    Y. Takahide et al., Phys. Rev. B 89, 235304 (2014) ADSCrossRefGoogle Scholar
  16. 16.
    Y. Takahide et al., Phys. Rev. B 94, 161301(R) (2016) ADSCrossRefGoogle Scholar
  17. 17.
    G. Akhgar et al., Nano Lett. 16, 3768 (2016) ADSCrossRefGoogle Scholar
  18. 18.
    D. Daghero et al., Phys. Rev. Lett. 108, 066807 (2012) ADSCrossRefGoogle Scholar
  19. 19.
    M. Tortello et al., Appl. Surf. Sci. 269, 17 (2013) ADSCrossRefGoogle Scholar
  20. 20.
    E. Piatti et al., Phys. Rev. B 95, 140501(R) (2017) ADSCrossRefGoogle Scholar
  21. 21.
    G.A. Ummarino et al., Phys. Rev. B 96, 064509 (2017) ADSCrossRefGoogle Scholar
  22. 22.
    E. Piatti et al., Phys. Rev. Materials (to be published), arXiv:1810:02801
  23. 23.
    R.S. Gonnelli et al., Sci. Rep. 5, 9554 (2015) CrossRefGoogle Scholar
  24. 24.
    E. Piatti et al., J. Supercond. Nov. Magn. 29, 587 (2016) CrossRefGoogle Scholar
  25. 25.
    L.J. Li et al., Nature 529, 185 (2016) ADSCrossRefGoogle Scholar
  26. 26.
    G. Pippione et al., Phys. Status Solidi A 214, 1700223 (2017) ADSCrossRefGoogle Scholar
  27. 27.
    K. Ushizawa et al., Diam. Relat. Mater. 7, 1719 (1998) ADSCrossRefGoogle Scholar
  28. 28.
    G. Inzelt, in Electroanalytical Methods: Guide to Experiments and Applications, edited by F. Scholz (Springer-Verlag, Berlin, 2010), p. 147 Google Scholar
  29. 29.
    W.L. McMillan, Phys. Rev. B 24, 2739 (1981) ADSCrossRefGoogle Scholar
  30. 30.
    A.I. Larkin, D.E. Khmel’nitskii, J. Exp. Theor. Phys. 56, 647 (1982) Google Scholar
  31. 31.
    A.J. Heeger, Phys. Scr. 2002, 30 (2002) CrossRefGoogle Scholar
  32. 32.
    P. Gonon et al., J. Appl. Phys. 78, 7059 (1995) ADSCrossRefGoogle Scholar
  33. 33.
    S. Kouno et al., Sci. Rep. 8, 14731 (2018) ADSCrossRefGoogle Scholar
  34. 34.
    N.F. Mott, E.A. Davis, Electronic Processes in Noncrystalline Materials (Oxford University Press, Oxford, 1979) Google Scholar
  35. 35.
    N.F. Mott, Metal-Insulator Transition (Taylor & Francis, London, 1990) Google Scholar
  36. 36.
    J.M. Lu et al., Science 350, 1353 (2015) ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Y. Saito, Y. Kasahara, J.T. Ye, Y. Iwasa, T. Nojima, Science 350, 409 (2015) ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    A. Fête, L. Rossi, A. Augieri, C. Senatore, Appl. Phys. Lett. 109, 192601 (2016) ADSCrossRefGoogle Scholar
  39. 39.
    E. Piatti et al., Appl. Surf. Sci. 461, 17 (2018) ADSCrossRefGoogle Scholar
  40. 40.
  41. 41.
    A.T. Collins, A.W.S. Williams, J. Phys. C.: Solid State Phys. 4, 1789 (1971) ADSCrossRefGoogle Scholar
  42. 42.
    V. Prosser, Czech. J. Phys. B 15, 128 (1965) ADSCrossRefGoogle Scholar
  43. 43.
    D. Braga et al., Nano Lett. 12, 5218 (2012) ADSCrossRefGoogle Scholar
  44. 44.
    Y. Saito, Y. Iwasa, ACS Nano 9, 3192 (2015) CrossRefGoogle Scholar
  45. 45.
    E. Piatti et al., Appl. Surf. Sci. 395, 37 (2017) ADSCrossRefGoogle Scholar
  46. 46.
    R.S. Gonnelli et al., 2D Mater. 4, 035006 (2017) CrossRefGoogle Scholar
  47. 47.
    E. Piatti, Q.H. Chen, J.T. Ye, Appl. Phys. Lett. 111, 013106 (2017) ADSCrossRefGoogle Scholar
  48. 48.
    D. Ovchinnikov et al., Nat. Commun. 7, 12391 (2016) ADSCrossRefGoogle Scholar
  49. 49.
    J.M. Lu et al., Proc. Natl. Acad. Sci. USA 115, 3551 (2018) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Erik Piatti
    • 1
  • Francesco Galanti
    • 1
  • Giulia Pippione
    • 2
    • 3
  • Alberto Pasquarelli
    • 3
  • Renato S. Gonnelli
    • 1
    Email author
  1. 1.Department of Applied Science and TechnologyPolitecnico di TorinoTorinoItaly
  2. 2.Department of Physics and “NIS” CentreUniversity of TorinoTorinoItaly
  3. 3.Institute of Electron Devices and Circuits, Ulm UniversityUlmGermany

Personalised recommendations