Advertisement

Investigation of cross-diffusion effects on Casson fluid flow in existence of variable fluid properties

  • R. SivarajEmail author
  • A. Jasmine Benazir
  • S. Srinivas
  • A. J. Chamkha
Regular Article
  • 15 Downloads
Part of the following topical collections:
  1. Microscopic Dynamics, Chaos and Transport in Nonequilibrium Processes

Abstract

A numerical investigation has been carried out for coupled partial differential equations which describe varying fluid properties on unsteady, free convective chemically reacting fluid flow on a moving vertical cone and flat plate. The computations for flow, heat, and mass transport in presence of thermal radiation, viscous dissipation, Soret and Dufour effects are carried out using Crank-Nicolson scheme. The influence of active parameters on transport properties of the fluid is displayed in form of graphs and tables. The results elucidate that the consideration of variable fluid properties has a significant influence on the flow, heat and mass transfer characteristics. Strengthening the Casson fluid parameter tends to decelerate the fluid velocity and escalate the local skin friction.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Ravindran, E.S. Roy, E. Momoniat, Int. J. Numer. Methods Heat Fluid Flow 19, 432 (2009) CrossRefGoogle Scholar
  2. 2.
    M.E. Ali, Int. J. Thermal Sci. 45, 60 (2006) CrossRefGoogle Scholar
  3. 3.
    R.A. Mohamed, S.M. Abo-Dahab, Int. J. Thermal Sci. 48, 1800 (2009) CrossRefGoogle Scholar
  4. 4.
    S. Mukhopadhyay, K. Bhattacharyya, G.C. Layek, Int. J. Heat Mass Transf. 54, 2751 (2011) CrossRefGoogle Scholar
  5. 5.
    P.N. Deshmukhi, G.S. Tirupati, G. Jayaraman, Acta Mech. 187, 189 (2006) CrossRefGoogle Scholar
  6. 6.
    G. Makanda, S. Shaw, P. Sibanda, Bound. Value Probl. 75, 2 (2015) Google Scholar
  7. 7.
    A. Mahdy, J. Eng. Phy. Thermophys. 88, 928 (2015) CrossRefGoogle Scholar
  8. 8.
    H.A. Attia, M.E. Sayed-Ahmed, J. Heat Transf. 130, 114504 (2008) CrossRefGoogle Scholar
  9. 9.
    J.C. Umavathi, M. Shekar, Meccanica 51, 71 (2016) MathSciNetCrossRefGoogle Scholar
  10. 10.
    G. Juncu, Int. J. Heat Mass Transf. 90, 542 (2015) CrossRefGoogle Scholar
  11. 11.
    B. Gebhart, J. Fluid Mech. 14, 225 (1962) ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    O.D. Makinde, A. Ogulu, Chem. Eng. Commun. 195, 1575 (2008) CrossRefGoogle Scholar
  13. 13.
    S. Eegunjobi, O.D. Makinde, M.S. Tshehla, O. Franks, J. Hydrodyn. 27, 304 (2015) ADSCrossRefGoogle Scholar
  14. 14.
    B. RushiKumar, R. Sivaraj, Int. J. Heat Mass Transf. 56, 370 (2013) CrossRefGoogle Scholar
  15. 15.
    R. Kumar, S.P. Mahulikar, Int. J. Therm. Sci. 98, 179 (2015) CrossRefGoogle Scholar
  16. 16.
    T. Hayat, S. Asad, A. Alsaedi, Appl. Math. Mech. Engl. Ed. 35, 717 (2014) CrossRefGoogle Scholar
  17. 17.
    F. Mabood, S.M. Ibrahim, M.M. Rashidi, M.S. Shadloo, G. Lorenzini, Int. J. Heat Mass Transf. 93, 674 (2016) CrossRefGoogle Scholar
  18. 18.
    Y. Khan, Q. Wu, N. Faraz, A. Yildirim, Comput. Math. Appl. 61, 3391 (2011) MathSciNetCrossRefGoogle Scholar
  19. 19.
    R. Tsai, K.H. Huang, J.S. Huang, Appl. Therm. Eng. 29, 1921 2009 Google Scholar
  20. 20.
    M. Varmazyar, M. Bazargan, Int. J. Heat Mass Transf. 59, 363 (2013) CrossRefGoogle Scholar
  21. 21.
    B.I. Olajuwon, J.I. Oahimire, Afr. Mat. 25, 911 (2014) MathSciNetCrossRefGoogle Scholar
  22. 22.
    I.L. Animasaun, C.S.K. Raju, N. Sandeep, Alexandria Eng. J. 55, 1595 (2016) CrossRefGoogle Scholar
  23. 23.
    R. Sivaraj, B. Rushi Kumar, Int. J. Heat Mass Transf. 55, 3076 (2012) CrossRefGoogle Scholar
  24. 24.
    V.R. Prasad, N.B. Reddy, R. Muthucumaraswamy, Int. J. Therm. Sci. 46, 1251 (2007) CrossRefGoogle Scholar
  25. 25.
    O.D. Makinde, I.L. Animasaun, J. Mol. Liq. 221, 733 (2016) CrossRefGoogle Scholar
  26. 26.
    T. Hayat, M. Mustafa, I. Pop, Commun. Nonlinear Sci. Numer. Simul. 15, 1183 (2010) CrossRefGoogle Scholar
  27. 27.
    J.A Weaver, R. Viskanta, Int. J. Heat Mass Transf. 34, 3121 (1991) CrossRefGoogle Scholar
  28. 28.
    R. Sivaraj, A.J. Benazir, Special Topics Rev. Porous Media 6, 1 (2015) CrossRefGoogle Scholar
  29. 29.
    M.M. Rashidi, T. Hayat, E. Erfani, S.A. Mohimanian Pour, A.A. Hendi, Commun. Nonlinear Sci. Numer. Simul. 16, 4303 (2011) ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    E. Magyari, A. Postelnicu, Transp. Porous Media 88, 149 (2011) MathSciNetCrossRefGoogle Scholar
  31. 31.
    C.S.K. Raju, N. Sandeep, J. Mol. Liq. 215, 115 (2016) CrossRefGoogle Scholar
  32. 32.
    R. Muthucumaraswamy, P. Ganesan, V.M. Soundalgekar, J. Energy Heat Mass Transf. 23, 63 (2001) Google Scholar
  33. 33.
    K. Vajravelu, K.V. Prasad, P.S. Datti, B.T. Raju, J. King Saud Univ. - Eng. Sci. 29, 57 (2017) Google Scholar
  34. 34.
    D. Srinivasacharya, M. Shiferaw, J. Heat Transf. 135, 122003 (2013) CrossRefGoogle Scholar
  35. 35.
    R. Sivaraj, B. Rushi Kumar, Int. J. Heat Mass Transf. 61, 119 (2013) CrossRefGoogle Scholar
  36. 36.
    A.J. Benazir, R. Sivaraj, O.D. Makinde, Int. J. Eng. Res. Afr. 21, 69 (2015) CrossRefGoogle Scholar
  37. 37.
    D. Mythili, R. Sivaraj, J. Mol. Liq. 216, 466 (2016) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • R. Sivaraj
    • 1
    Email author
  • A. Jasmine Benazir
    • 1
  • S. Srinivas
    • 2
  • A. J. Chamkha
    • 3
    • 4
  1. 1.Department of Mathematics, School of Advanced SciencesVITVelloreIndia
  2. 2.Department of MathematicsVITAmaravathiIndia
  3. 3.Mechanical Engineering Department, Prince Sultan Endowment for Energy and Environment, Prince Mohammad Bin Fahd UniversityAl-KhobarSaudi Arabia
  4. 4.RAK Research and Innovation Center, American University of Ras Al KhaimahRas Al KhaimahUnited Arab Emirates

Personalised recommendations